簡易檢索 / 詳目顯示

研究生: 陳育聖
Chen, Yu-sheng
論文名稱: 新型菱形混合器與毛細驅動晶片設計與製作
Design and fabrication of the novel rhombic mixer and fluidic chip with capillary pump
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 104
中文關鍵詞: 混合器毛細力幫浦晶片
外文關鍵詞: mixer, capillary pump chip
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 實驗室晶片中,流體混合裝置與驅動流體元件是兩個關鍵性技術。本論文將針對微型混合器與毛細驅動晶片分別做探討。在微型混合器製作上,採用亦整合之平面式被動微型混合器,利用設計之幾何形狀改變讓預混合不同流體間產生混合;並搭配模擬軟體CFD-ACE+(CFD Research Corporation)分析微混合器內流場行為,並與實驗互相對照。設計之圖形採用菱型前後加縮口且轉角處切邊之菱型結構混合器,混合效率可達80%。
    大部分驅動流體微幫浦,均需額外輸入能量;作者開發不需額外輸入能量之毛細驅動晶片,利用材料親水特性產生之毛細力,讓流體在微流道中流動。最後將毛細驅動晶片應用在傳統血液凝固時間測定上。實驗結果也顯示此毛細驅動晶片有潛力檢測接受肝素治療之臨床血液樣本。
    對於設計出之新型菱型混合器與毛細驅動晶片技術,希望未來可同時整合在實驗室晶片,對於實驗室晶片有所貢獻。

    Mixing and pumping fluid in the microchannel were important issues on a lab chip. In the thesis, author focused on the development of planner micromixers with easy fabrication and capillary pump chip. The research used the software, CFD-ACE+(CFD Research Corporation)to design and observe the flow field in the rhombic micromixer. Simulation results showing that front and end nozzle/diffuser structure and flat angle rhombic micromixer was best design and mixing efficiency was up to 80%.
    Most of the micropump need extra power input and let fluid flow in the microchannel. Author fabricated of the capillary pump chip. It did not need extra power input and let fluid flow in the microchannel. Then, author used capillary pump to apply in testing whole blood clotting time. It meant capillary pump chip was workable applying in clinical tests on patients received heparin treatment.
    Author hoped one day the design of the rhombic mixer and capillary pump chip were attributed to lab on chip.

    摘要.................................................I Abstract.............................................II 致謝.................................................III 目錄.................................................IV 表目錄...............................................VIII 圖目錄...............................................IX 第一章 緒論..........................................1 1-1 研究背景.........................................1 1-2 文獻回顧.........................................2 1-3 研究動機.........................................13 第二章 微型混合器數值模擬與結構設計..................14 2-1 基本設定.........................................14 2-2數值方法與模擬....................................16 2-2-1 微型混合器之數值模擬...........................16 2-2-2 建立微型混合器之格點(CFD-GEOM)...............17 2-2-3 模擬之邊界、收斂條件與運算(CFD-VIEW).........18 2-2-4 數值結果之處理.................................18 2-3 混合效率.........................................19 2-4 微型混合器之設計.................................20 2-4-1 後縮口菱形微流道混合器.........................21 2-4-2 前縮口菱形微流道混合器.........................22 2-4-3 前後縮口菱形微流道混合器.......................23 2-4-4 傳統十字型微流道混合器.........................24 2-4-5 前縮口且轉角切邊之菱形微流道混合器.............25 2-4-6 前後縮口且轉角切邊之菱形微流道混合器...........26 第三章 微型混合器之製作..............................27 3-1光罩製作..........................................28 3-2 微型混合器母模製作...............................30 3-3 PDMS翻模製作微型混合器...........................37 3-4 氧電漿處理接合...................................38 3-5 微型混合器之測試.................................39 3-5-1 影像擷取系統...................................39 3-5-2 微量式注射幫浦.................................40 3-5-3 實驗測試.......................................41 第四章 毛細力驅動流體晶片之製作與應用................42 4-1毛細力驅動流體原理................................42 4-1-1 毛細壓力公式推導...............................42 4-1-1-1表面張力相關理論..............................42 4-1-1-2表面張力之介面介紹............................43 4-1-1-3接觸角........................................44 4-1-1-4 Yong 氏方程式................................46 4-1-1-5 表面能.......................................46 4-1-1-6 毛細作用基本方程式...........................47 4-1-1-7 理論推導.....................................49 4-1-1-8毛細力驅動流體之動量方程式....................52 4-2毛細力驅動血液凝固晶片之設計與製作................53 4-2-1毛細力驅動血液凝固晶片之設計與製作..............54 4-2-1-1 晶片之設計...................................54 4-2-1-1 晶片之製作...................................56 4-2-2影像擷取系統....................................58 4-2-3實驗參數........................................59 4-2-3-1 全血在流道中凝固時間.........................59 4-2-3-2 全血含抗凝固劑在流道中再鈣化血液凝固時間.....60 4-2-3-3 全血添加肝素對再鈣化血液凝固時間.............61 第五章 結果分析與討論................................63 5-1微菱形混合器之探討................................63 5-1-1 菱形混合器縮口位置之影響.......................64 5-1-2 菱形混合器轉彎處切邊之影響.....................81 5-2血液凝固之簡介....................................86 5-2-1 全血在流道中凝固時間...........................88 5-2-2 不同鹽類濃度對含抗凝劑全血凝固時間之影響.......89 5-2-3 添加肝素對含抗凝劑全血凝固時間之影響...........91 第六章 結論與未來展望................................92 6-1結論..............................................92 6-1-1 新型菱形混合器.................................92 6-1-2 毛細驅動晶片...................................93 6-2本文貢獻..........................................95 6-3未來展望..........................................96 6-3-1 新型菱形混合器.................................96 6-3-2 毛細驅動晶片...................................97 參考文獻.............................................98 作者簡歷.............................................103

    1.H. Y. Wu and C. H. Liu, “A novel electrokinetic micromixer”, The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, U.S.A., pp. 631-634, 2003.
    2.Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto and R. Maedu, “Ultrasonic micromixer for microfluidic systems”, Sensors and Actuators A 93, pp. 266-272, 2001.
    3.L. H. Lu, K. S. Ryu and C. Liu, “A magnetic microstirrer and array for microfluidic mixing”, Journal of Microelectormechanical Systems, Vol. 11, pp. 462-469, 2002.
    4.J. H. Tsai and L. Lin, “Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump”, Sensors and Actuators A 97-98, pp. 665-671, 2002.
    5.J. Branebjerg, P. Gravesen, J. P. Krog, and C. R. Nielsen, “Fast mixing by lamination”, IEEE Micro Electro Mechanical Systems, San Diego, U.S.A., pp. 441-446, 1996.
    6.S. C. Jacobson, T. E. McKnight, and J. M. Ramsey, “Microfluidic devices for electrokinetically driven parallel and serial mixing”, Analytical Chemistry, Vol.71, pp. 4455-4459, 1999.
    7.A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, “Chaotic mixer for microchannels”, Science, Vol. 295, pp. 647-651, 2002.
    8.C. K. Chung and T. R. Shih, “Effect of Geometry on Fluid Mixing of the Rhombic Micromixers”, Microfluid Nanofluid, Vol. 4, pp. 419-425, 2008.
    9.C. K. Chung, T. R. Shih, T. C. Chen and B. H. Wu, “Mixing behavior of the rhombic micromixers over a wide Reynolds number range using Taguchi method and 3D numerical simulations”, Biomedical Microdevice, Vol. 10, pp. 739-748, 2008
    10.M. Engler, N. Kockmann, T. Kiefer, and P. Woias, “Numerical and experimental investigations on liquid mixing in static micromixers”, Chemical Engineering Journal, Vol. 101, pp. 315-322, 2004.
    11.S. H. Wong, M. C. L. Ward, and C. W. Wharton, “Micro T-mixer as a rapid mixing micromixer”, Sensor and Actuator B: Chemical, Vol. 100, pp. 359-379, 2004.
    12.I. D Yang, Y. F. Chen, F. G. Tseng, H. T. Hsu and C.C. Chieng, “Surface tension driven and 3-D vortex enhanced rapid mixing microchamber”, Journal of Microelectromechanical Systems, Vol. 15, pp.659-670, 2006.
    13.H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, “Low Voltage electrowetting-on-dielectric”, Journal of Applied Physics, Vol. 92, pp. 4080-4087, 2002.
    14.C. C.Wong, D. R. Adkins and D. Chu, “Development of a micropump for microelectronic cooling”, Journal of Microelectromechanical Systems, Vol. 59, 1996.
    15.S. H. Ahn and Y. K. Kim, “Fabrication and experiment of a planar micro ion drag pump”, Sensors Actuators A 70, pp. 1–5, 1998.
    16.J. Darabi, M. Rada, M. Ohadi and J. Lawler, “Design, fabrication and testing of an electrohydrodynamic ion-drag micropump”, Journal of Microelectromechanical Systems, Vol. 11, pp. 684–690, 2002.
    17.A. Furuya, F. Shimokawa, T. Matsuura and R. Sawada, “Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump”
    , Journal of Micromechanical Microengineering, Vol. 6, pp. 310–319, 1996.
    18.D. J. Laser and J. G. Santiago, “A review of micropumps”, Journal of Micromechanical Microengineering, Vol. 14, pp. R35-R64, 2004.
    19.S. H. Yao, D. E. Hertzog, S. L. Zeng, J. C. Mikkelsen and J. G. Santiago, “Porous glass electroosmotic pumps: design and experiments”, Journal of Colloid Interface Science, Vol. 268, pp. 143-153, 2003.
    20.A. MacHauf, Y. Nemirovsky and U. Dinnar, “A membrane micropump electrostatically actuated across the working fluid”, Journal of Micromechanical Microengineering, Vol. 15, pp. 2309-2316, 2005.
    21.M. Elwenspoek, T. S. J. Lammerink, R. Miyake and J. H. J. Fluitman, “Towards integrated microliquid handling systems”, Journal of Micromechanical Microengineering, Vol. 4 , pp. 227–245, 1994.
    22.T. Y. Ng, T.Y. Jiang, H. Lib, K.Y. Lamb and J. N. Reddyc, “A coupled field study on the non-linear dynamic characteristics of an electrostatic micropump”, Journal of Sound and Vibration, Vol. 273, pp. 989-1006, 2003.
    23.O. Francais and I. Dufor, “Dynamic simulation of an electrostatic micropump with pull-in and hysteresis phenomena”, Sensors and Actuators A 70, pp. 56-60, 1998.
    24.S. Bohm, W. Olthuis and P. Bergveld, “A plastic micropump constructed with conventional techniques and Materials”, Sensors and Actuators A 77, pp. 223-228, 1999.
    25.Q. Gong, Z. Zhou, Y. Yang and X. Wang, “Design, optimization and simulation on micro electromagnetic pump ”, Sensors and Actuators A 83, pp. 200-207, 2000.
    26.D. S. Leea, J. S. Koa and Y. T. Kima, “Bidirectional pumping properties of a peristaltic piezoelectric micropump with simple design and chemical resistance”, Thin Solid Films, Vol. 468, pp. 285-290, 2004.
    27.M. Kochy, N. Harris, A. G. R. Evans, N. M. White and A Brunnschweiler, “A novel micromachined pump based on thick-film piezoelectric actuator”, Sensors and Actuators A 70, pp. 98-103, 1998.
    28.J. H. Tsai and L. W. Lin, “A Thermal Bubble Actuated Micro Nozzle-Diffuser Pump”, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 409-412, 2001.
    29.J. H. Tsai and L. W. Lin, “A Thermal-Bubble-Actuated Micronozzle-Diffuser Pump”, Journal of Microelectromechanical systems, Vol. 11, pp. 665-671, 2002.
    30.E. Makino, T. Shibata and K. Kato, “Dynamic thermo-mechanical properties of evaporated TiNi shape memory thin film”, Sensors and Actuators A 78, pp. 163-167, 1999.
    31.E. Makino, T. Mitsuya and T. Shibata, “Fabrication of TiNi shape memory micropump”, Sensors and Actuators A 88, pp. 256-262, 2001.
    32.S. H. Yao, D. E. Hertzog, S. L. Zeng, J. C. Mikkelsen and J. G. Santiago, “Porous glass electroosmotic pumps: design and experiments”, Journal of Colloid Interface Science, Vol. 268, pp. 143-153, 2003.
    33.Y. J. Chuang, T. H. Chen and F. G. Tseng, “Low Temperature, Clogging-free and Roughness-Insensitive Polymer Bonding Methods for Stacked Polymer Microfluidic Systems”, IEEE Transducers'05, June 8-12, Seoul, South Korea, 2005.
    34.J. A. Vickers, M. M. Caulum, and C. S. Henry, “Generation of Hydrophilic Poly(dimethylsiloxane) for High-Performance Microchip Electrophoresis”, Analytical Chemistry, Vol. 78, pp. 7446-7452, 2006.
    35.回寶珩, 林展生, 李國賓,“PDMS表面處理技術及其在新式微閥之應用”, The 6th Nano Engineering and Micro System Technology Workshop, Sec. 4C-5, 2002.

    下載圖示 校內:2019-07-29公開
    校外:2019-07-29公開
    QR CODE