| 研究生: |
尤儀德 Yo, Yi-Te |
|---|---|
| 論文名稱: |
藉由注射HER2/neu之DNA疫苗並結合Flt3-ligand及GM-CSF基因佐劑於小鼠膀胱癌模式中引起抗腫瘤免疫反應 Induction of antitumor immune responses by HER2/neu DNA vaccine combined with Flt3-ligand and GM-CSF genetic adjuvants in murine bladder tumor models |
| 指導教授: |
蕭璦莉
Shiau, Ai-Li |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 基因佐劑 、抗腫瘤免疫反應 、細胞激素 、癌症免疫治療 、棘狀細胞 、基因疫苗 |
| 外文關鍵詞: | antitumor immune response, DC, HER2/neu, GM-CSF, DNA vaccine, Flt3L, genetic adjuvant |
| 相關次數: | 點閱:86 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在生物體內,棘狀細胞是最主要的抗原呈現細胞,且具有活化專一性抗癌免疫反應之能力。將基因疫苗與以棘狀細胞為基礎之細胞疫苗合併應用已成為有效的癌症免疫治療策略。似Fms酪氨酸活化酶-3 配合體(Flt3L)與顆粒細胞¬-巨噬細胞叢聚刺激因子(GM-CSF)曾經被應用來促使棘狀細胞增生。過去的研究指出,結合載有GM-CSF及乳腺癌細胞抗原HER2/neu之質體(pN-neu)作為DNA疫苗,可引起由CD4胸腺細胞(T cells)主導之抗腫瘤免疫反應。在本篇研究當中,我們藉由可表現Flt3L及GM-CSF兩種細胞激素之質體(pFLAG)及合併兩個僅能單獨表現其中一種細胞激素之質體(pFL plus pGM)作為疫苗之基因佐劑來研究佐劑修飾作用於疫苗引起的免疫反應。我們更進一步嘗試將pFLAG經由真皮層注射來免疫小鼠,並希望外送之基因產物可以吸引蘭氏細胞及真皮層棘狀細胞浸潤到注射疫苗處,捕捉外送之pN-neu所表現出之特殊抗原。直接將DNA以真皮層注射方式可以將基因傳送進皮膚細胞,但過去的研究報告指出,利用真皮層注射一般實驗中所採用之七至八週齡小鼠,與同樣方式處理的四到五週齡小鼠相比,其基因傳送效率是大為降低的。因此我們也研究DNA疫苗配合高離子濃度溶液,是否可以加強基因表現並引起較佳之免疫反應。我們更近一步來研究單一質體pFLAG及合併兩個質體pFL和pGM其增強HER2/neu DNA疫苗(pN-neu)產生之免疫反應效用。在我們的實驗中發現,共同表現Flt3L及GM-CSF明顯有助於脾臟中棘狀細胞的成熟度及呈現抗原之能力。小鼠接受肌肉注射疫苗後(pN-neu及pFLAG),其注射處引起棘狀細胞浸潤,增強小鼠之脾臟細胞針對腫瘤細胞分泌高量干擾素-丙(interferon-γ),而細胞毒殺能力也明顯提升。當小鼠經由肌肉或真皮層注射pN-neu和pFLAG後,其體內產生了由CD8+ T細胞主導之針對自然表現出HER2/neu之小鼠膀胱癌細胞的抗腫瘤免疫反應。整體來說,我們的研究發現利用共同表現Flt3L及GM-CSF之策略具有轉移免疫反應類型之能力,且由pFLAG作為HER2/neu疫苗佐劑其產生之保護效果也優於合併使用兩個分開攜帶Flt3L和GM-CSF之質體。另一方面來說,我們也推測給予小鼠經由真皮層注射溶於高離子濃度溶液之疫苗後,體內所產生之抗腫瘤免疫反應與溶液協助轉殖基因快速且較長期的表現是具有相關性的,可以對於抗腫瘤疫苗的應用上有所助益。
Dendritic cells (DC) are powerful antigen-presenting cells for activation of specific antitumor immune responses. DNA vaccine and DC-based vaccine have emerged as promising strategies for cancer immunotherapy. Fms-like tyrosine kinase 3-ligand (Flt3L) and granulocyte-macrophage colony stimulating factor (GM-CSF) have been exploited for the expansion of DC. It was reported previously that combination of plasmid encoding GM-CSF with HER2/neu DNA vaccine induced predominantly CD4+ T cell-mediated antitumor immune response. In this study, we investigated the modulation of immune responses by murine Flt3L and GM-CSF, which acted as genetic adjuvants in the forms of bicistronic (pFLAG) and monocistronic (pFL and pGM) plasmids for HER2/neu DNA vaccine (pN-neu). Furthermore, we attempted to immunize mice with pFLAG intradermally to attract Langerhans cells and dermal DC infiltrating into injection site to capture the pN-neu encoded gene product. Intradermal injection of naked DNA results in gene transfer to skin cells, but previous report showed transfection efficiency in older mice (approximately 7 weeks) was a significant decrease in gene expression compared with younger mice (4-5 weeks old). We study whether DNA vaccine diluted in modified solution will enhance transgene expression and affect immune response compared with those diluted in traditional isotonic buffer. We further investigated the ability of pFLAG and pFL plus pGM for enhancing the efficacy of HER2/neu DNA vaccine (pN-neu). We found coexpression of Flt3L and GM-CSF significantly enhanced maturation and antigen presentation abilities of splenic DC. Increased numbers of infiltrating DC at the immunization site, higher interferon-γ production, and enhanced cytolytic activities by splenocytes were prominent in mice vaccinated intramuscularly with pN-neu in conjunction with pFLAG. Importantly, a potent CD8+ T cell-mediated antitumor immunity against bladder tumors naturally overexpressing HER2/neu was induced in the mice received intramuscular and intradermal vaccination with pN-neu and pFLAG. Collectively, our results indicate that bicistronic plasmid pFLAG modulate the class of immune responses and may be superior to those codelivered with pFL plus pGM as the genetic adjuvants for HER2/neu DNA vaccine. In other, we suggest vaccine-high ionic solution promote strong antitumor immune response in vaccinated mice that is associated with the rapid and prolonged expression of transgene may be a benefit in application of antitumor vaccine.
References
Alsheikhly,A.R., Zweiri,J., Walmesley,A.J., Watson,A.J., and Christmas,S.E. (2004). Both soluble and membrane-bound forms of Flt3 ligand enhance tumor immunity following "suicide" gene therapy in a murine colon carcinoma model. Cancer Immunol. Immunother. 53, 946-954.
Amici,A., Smorlesi,A., Noce,G., Santoni,G., Cappelletti,P., Capparuccia,L., Coppari,R., Lucciarini,R., Petrelli,C., and Provinciali,M. (2000). DNA vaccination with full-length or truncated neu induces protective immunity against the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Gene Ther. 7, 703-706.
Angelov,G.S., Tomkowiak,M., Marcais,A., Leverrier,Y., and Marvel,J. (2005). Flt3 ligand-generated murine plasmacytoid and conventional dendritic cells differ in their capacity to prime naive CD8 T cells and to generate memory cells in vivo. J. Immunol. 175, 189-195.
Anjuere,F., Martin,P., Ferrero,I., Fraga,M.L., del Hoyo,G.M., Wright,N., and Ardavin,C. (1999). Definition of dendritic cell subpopulations present in the spleen, Peyer's patches, lymph nodes, and skin of the mouse. Blood 93, 590-598.
A
ustyn,J.M. (1993). The dendritic cell system and anti-tumour immunity. In Vivo 7, 193-201.
Banchereau,J., Briere,F., Caux,C., Davoust,J.,
Lebecque,S., Liu,Y.J., Pulendran,B., and Palucka,K. (2000). Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767-811.
Berhanu,A., Huang,J., Alber,S.M., Watkins,S.C., and Storkus,W.J. (2006). Combinational FLt3 ligand and granulocyte macrophage colony-stimulating factor treatment promotes enhanced tumor infiltration by dendritic cells and antitumor CD8(+) T-cell cross-priming but is ineffective as a therapy. Cancer Res. 66, 4895-4903.
Bernt,K.M., Ni,S., Tieu,A.T., and Lieber,A. (2005). Assessment of a combined, adenovirus-mediated oncolytic and immunostimulatory tumor therapy. Cancer Res. 65, 4343-4352.
Cassaday,R.D., Sondel,P.M., King,D.M., Macklin,M.D., Gan,J., Warner,T.F., Zuleger,C.L., Bridges,A.J., Schalch,H.G., Kim,K.M., Hank,J.A., Mahvi,D.M., and
Albertini,M.R. (2007). A phase I study of immunization using particle-mediated epidermal delivery of genes for gp100 and GM-CSF into uninvolved skin of melanoma patients. Clin. Cancer Res. 13, 540-549.
Cebon,J.S. and Lieschke,G.J. (1994). Granulocyte-macrophage colony-stimulating factor for cancer treatment. Oncology 51, 177-188.
Cefai,D., Morrison,B.W., Sckell,A., Favre,L., Balli,M., Leunig,M., and Gimmi,C.D. (1999). Targeting HER-2/neu for active-specific immunotherapy in a mouse model of spontaneous breast cancer. Int. J. Cancer 83, 393-400.
Chang,S.Y., Lee,K.C., Ko,S.Y., Ko,H.J., and Kang,C.Y. (2004). Enhanced efficacy of DNA vaccination against Her-2/neu tumor antigen by genetic adjuvants. Int. J. Cancer 111, 86-95.
Chaudhry,U.I., Katz,S.C., Kingham,T.P., Pillarisetty,V.G., Raab,J.R., Shah,A.B., and DeMatteo,R.P. (2006). In vivo overexpression of Flt3 ligand expands and activates murine spleen natural killer dendritic cells. FASEB J. 20, 982-984.
Chesnoy,S. and Huang,L. (2002). Enhanced cutaneous gene delivery following intradermal injection of naked DNA in a high ionic strength solution. Mol. Ther. 5, 57-62.
Churchill,L., Friedman,B., Schleimer,R.P., and Proud,D. (1992). Production of granulocyte-macrophage colony-stimulating factor by cultured human tracheal epithelial cells. Immunology 75, 189-195.
Coogan,C.L., Estrada,C.R., Kapur,S., and Bloom,K.J. (2004). HER-2/neu protein overexpression and gene amplification in human transitional cell carcinoma of the bladder. Urology 63, 786-790.
Corr,M., von Damm,A., Lee,D.J., and Tighe,H. (1999). In vivo priming by DNA injection occurs predominantly by antigen transfer. J. Immunol. 163, 4721-4727.
Curcio,C., Di Carlo,E., Clynes,R., Smyth,M.J., Boggio,K., Quaglino,E., Spadaro,M., Colombo,M.P., Amici,A., Lollini,P.L., Musiani,P., and Forni,G. (2003). Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas. J. Clin. Invest 111, 1161-1170.
Dakappagari,N.K., Douglas,D.B., Triozzi,P.L., Stevens,V.C., and Kaumaya,P.T. (2000). Prevention of mammary tumors with a chimeric HER-2 B-cell epitope peptide vaccine. Cancer Res. 60, 3782-3789.
Daro,E., Butz,E., Smith,J., Teepe,M., Maliszewski,C.R., and McKenna,H.J. (2002). Comparison of the functional properties of murine dendritic cells generated in vivo with Flt3 ligand, GM-CSF and Flt3 ligand plus GM-SCF. Cytokine 17, 119-130.
Daro,E., Pulendran,B., Brasel,K., Teepe,M., Pettit,D., Lynch,D.H., Vremec,D., Robb,L., Shortman,K., McKenna,H.J., Maliszewski,C.R., and Maraskovsky,E. (2000). Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J. Immunol. 165, 49-58.
Davis,H.L., Brazolot Millan,C.L., Mancini,M., McCluskie,M.J., Hadchouel,M., Comanita,L., Tiollais,P., Whalen,R.G., and Michel,M.L. (1997). DNA-based immunization against hepatitis B surface antigen (HBsAg) in normal and HBsAg-transgenic mice. Vaccine 15, 849-852.
Davis,H.L., Whalen,R.G., and Demeneix,B.A. (1993). Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression. Hum. Gene Ther. 4, 151-159.
Davis-Harrison,R.L., Armstrong,K.M., and Baker,B.M. (2005). Two different T cell receptors use different thermodynamic strategies to recognize the same peptide/MHC ligand. J. Mol. Biol. 346, 533-550.
Di Leo,A., Gancberg,D., Larsimont,D., Tanner,M., Jarvinen,T., Rouas,G., Dolci,S., Leroy,J.Y., Paesmans,M., Isola,J., and Piccart,M.J. (2002). HER-2 amplification and topoisomerase II α gene aberrations as predictive markers in node-positive breast cancer patients randomly treated either with an anthracycline-based therapy or with cyclophosphamide, methotrexate, and 5-fluorouracil. Clin. Cancer Res. 8, 1107-1116.
Disis,M.L., Gooley,T.A., Rinn,K., Davis,D., Piepkorn,M., Cheever,M.A., Knutson,K.L., and Schiffman,K. (2002). Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J. Clin. Oncol. 20, 2624-2632.
Doe,B., Selby,M., Barnett,S., Baenziger,J., and Walker,C.M. (1996). Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells. Proc. Natl. Acad. Sci. U. S. A 93, 8578-8583.
Domashenko,A., Gupta,S., and Cotsarelis,G. (2000). Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat. Biotechnol. 18, 420-423.
Drabick,J.J., Glasspool-Malone,J., King,A., and Malone,R.W. (2001). Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol. Ther. 3, 249-255.
Dupuis,M., Denis-Mize,K., Woo,C., Goldbeck,C., Selby,M.J., Chen,M., Otten,G.R., Ulmer,J.B., Donnelly,J.J., Ott,G., and McDonald,D.M. (2000). Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J. Immunol. 165, 2850-2858.
Ercolini,A.M., Machiels,J.P., Chen,Y.C., Slansky,J.E., Giedlen,M., Reilly,R.T., and Jaffee,E.M. (2003). Identification and characterization of the immunodominant rat HER-2/neu MHC class I epitope presented by spontaneous mammary tumors from HER-2/neu-transgenic mice. J. Immunol. 170, 4273-4280.
Esserman,L.J., Lopez,T., Montes,R., Bald,L.N., Fendly,B.M., and Campbell,M.J. (1999). Vaccination with the extracellular domain of p185neu prevents mammary tumor development in neu transgenic mice. Cancer Immunol. Immunother. 47, 337-342.
Falo,L.D., Jr. (1999). Targeting the skin for genetic immunization. Proc. Assoc. Am. Physicians 111, 211-219.
Fernandez,N.C., Lozier,A., Flament,C., Ricciardi-Castagnoli,P., Bellet,D., Suter,M., Perricaudet,M., Tursz,T., Maraskovsky,E., and Zitvogel,L. (1999). Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat. Med. 5, 405-411.
Fong,C.L. and Hui,K.M. (2002). Generation of potent and specific cellular immune responses via in vivo stimulation of dendritic cells by pNGVL3-hFLex plasmid DNA and immunogenic peptides. Gene Ther. 9, 1127-1138.
Fong,C.L., Mok,C.L., and Hui,K.M. (2006). Intramuscular immunization with plasmid coexpressing tumour antigen and Flt-3L results in potent tumour regression. Gene Ther. 13, 245-256.
Fong,L. and Engleman,E.G. (2000). Dendritic cells in cancer immunotherapy. Annu. Rev. Immunol. 18, 245-273.
Foy,T.M., Bannink,J., Sutherland,R.A., McNeill,P.D., Moulton,G.G., Smith,J., Cheever,M.A., and Grabstein,K. (2001). Vaccination with Her-2/neu DNA or protein subunits protects against growth of a Her-2/neu-expressing murine tumor. Vaccine 19, 2598-2606.
Foy,T.M., Fanger,G.R., Hand,S., Gerard,C., Bruck,C., and Cheever,M.A. (2002). Designing HER2 vaccines. Semin. Oncol. 29, 53-61.
Fryer,M.W., Owen,V.J., Lamb,G.D., and Stephenson,D.G. (1995). Effects of creatine phosphate and P(i) on Ca2+ movements and tension development in rat skinned skeletal muscle fibres. J. Physiol 482 ( Pt 1), 123-140.
Fu,T.M., Ulmer,J.B., Caulfield,M.J., Deck,R.R., Friedman,A., Wang,S., Liu,X., Donnelly,J.J., and Liu,M.A. (1997). Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol. Med. 3, 362-371.
Furumoto,K., Arii,S., Yamasaki,S., Mizumoto,M., Mori,A., Inoue,N., Isobe,N., and Imamura,M. (2000). Spleen-derived dendritic cells engineered to enhance interleukin-12 production elicit therapeutic antitumor immune responses. Int. J. Cancer 87, 665-672.
Giani,C., Casalini,P., Pupa,S.M., De Vecchi,R., Ardini,E., Colnaghi,M.I., Giordano,A., and Menard,S. (1998). Increased expression of c-erbB-2 in hormone-dependent breast cancer cells inhibits cell growth and induces differentiation. Oncogene 17, 425-432.
Glasspool-Malone,J., Somiari,S., Drabick,J.J., and Malone,R.W. (2000). Efficient nonviral cutaneous transfection. Mol. Ther. 2, 140-146.
Hartikka,J., Bozoukova,V., Jones,D., Mahajan,R., Wloch,M.K., Sawdey,M., Buchner,C., Sukhu,L., Barnhart,K.M., Abai,A.M., Meek,J., Shen,N., and Manthorpe,M. (2000). Sodium phosphate enhances plasmid DNA expression in vivo. Gene Ther. 7, 1171-1182.
Hill,A.D., Naama,H.A., Calvano,S.E., and Daly,J.M. (1995). The effect of granulocyte-macrophage colony-stimulating factor on myeloid cells and its clinical applications. J. Leukoc. Biol. 58, 634-642.
Hohlfeld,R. and Engel,A.G. (1994). The immunobiology of muscle. Immunol. Today 15, 269-274.
Horton,H.M., Anderson,D., Hernandez,P., Barnhart,K.M., Norman,J.A., and Parker,S.E. (1999). A gene therapy for cancer using intramuscular injection of plasmid DNA encoding interferon α. Proc. Natl. Acad. Sci. U. S. A 96, 1553-1558.
Hsieh,C.L., Pang,V.F., Chen,D.S., and Hwang,L.H. (1997). Regression of established mouse leukemia by GM-CSF-transduced tumor vaccine: implications for cytotoxic T lymphocyte responses and tumor burdens. Hum. Gene Ther. 8, 1843-1854.
Hung,C.F., Hsu,K.F., Cheng,W.F., Chai,C.Y., He,L., Ling,M., and Wu,T.C. (2001). Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res. 61, 1080-1088.
Inaba,K., Inaba,M., Romani,N., Aya,H., Deguchi,M., Ikehara,S., Muramatsu,S., and Steinman,R.M. (1992). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693-1702.
Iwasaki,A., Stiernholm,B.J., Chan,A.K., Berinstein,N.L., and Barber,B.H. (1997). Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J. Immunol. 158, 4591-4601.
Jalouli,M., Carlsson,L., Ameen,C., Linden,D., Ljungberg,A., Michalik,L., Eden,S., Wahli,W., and Oscarsson,J. (2003). Sex difference in hepatic peroxisome proliferator-activated receptor α expression: influence of pituitary and gonadal hormones. Endocrinology 144, 101-109.
Jeon,Y.H., Choi,Y., Kang,J.H., Kim,C.W., Jeong,J.M., Lee,D.S., and Chung,J.K. (2007). Immune Response to Firefly Luciferase as a Naked DNA. Cancer Biol. Ther. 6.
Kearney,A., Avramovic,A., Castro,M.A., Carmo,A.M., Davis,S.J., and van der Merwe,P.A. (2007). The contribution of conformational adjustments and long-range electrostatic forces to the CD2/CD58 interaction. J. Biol. Chem. 282, 13160-13166.
Kielian,T., Nagai,E., Ikubo,A., Rasmussen,C.A., and Suzuki,T. (1999). Granulocyte/macrophage-colony-stimulating factor released by adenovirally transduced CT26 cells leads to the local expression of macrophage inflammatory protein 1α and accumulation of dendritic cells at vaccination sites in vivo. Cancer Immunol. Immunother. 48, 123-131.
Kim,J.J., Ayyavoo,V., Bagarazzi,M.L., Chattergoon,M.A., Dang,K., Wang,B., Boyer,J.D., and Weiner,D.B. (1997). In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J. Immunol. 158, 816-826.
Klein,C., Bueler,H., and Mulligan,R.C. (2000). Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J. Exp. Med. 191, 1699-1708.
Knutson,K.L., Schiffman,K., and Disis,M.L. (2001). Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J. Clin. Invest 107, 477-484.
Kusakabe,K., Xin,K.Q., Katoh,H., Sumino,K., Hagiwara,E., Kawamoto,S., Okuda,K., Miyagi,Y., Aoki,I., Nishioka,K., Klinman,D., and Okuda,K. (2000). The timing of GM-CSF expression plasmid administration influences the Th1/Th2 response induced by an HIV-1-specific DNA vaccine. J. Immunol. 164, 3102-3111.
Kutzler,M.A. and Weiner,D.B. (2004). Developing DNA vaccines that call to dendritic cells. J. Clin. Invest 114, 1241-1244.
Kuwashima,N., Nishimura,F., Eguchi,J., Sato,H., Hatano,M., Tsugawa,T., Sakaida,T., Dusak,J.E., Fellows-Mayle,W.K., Papworth,G.D., Watkins,S.C., Gambotto,A., Pollack,I.F., Storkus,W.J., and Okada,H. (2005). Delivery of Dendritic Cells Engineered to Secrete IFN-α into Central Nervous System Tumors Enhances the Efficacy of Peripheral Tumor Cell Vaccines: Dependence on Apoptotic Pathways. J. Immunol. 175, 2730-2740.
Kwissa,M., Kroger,A., Hauser,H., Reimann,J., and Schirmbeck,R. (2003). Cytokine-facilitated priming of CD8+ T cell responses by DNA vaccination. J. Mol. Med. 81, 91-101.
Lee,C.H., Wu,C.L., and Shiau,A.L. (2005). Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer Gene Ther. 12, 175-184.
Lee,S.W., Cho,J.H., and Sung,Y.C. (1998). Optimal induction of hepatitis C virus envelope-specific immunity by bicistronic plasmid DNA inoculation with the granulocyte-macrophage colony-stimulating factor gene. J. Virol. 72, 8430-8436.
Li,L., Masucci,M.G., and Levitsky,V. (2000). Effect of interleukin-7 on the in vitro development and maturation of monocyte derived human dendritic cells. Scand. J. Immunol. 51, 361-371.
Lin,C.C., Chou,C.W., Shiau,A.L., Tu,C.F., Ko,T.M., Chen,Y.L., Yang,B.C., Tao,M.H., and Lai,M.D. (2004). Therapeutic HER2/Neu DNA vaccine inhibits mouse tumor naturally overexpressing endogenous neu. Mol. Ther. 10, 290-301.
Lindencrona,J.A., Preiss,S., Kammertoens,T., Schuler,T., Piechocki,M., Wei,W.Z., Seliger,B., Blankenstein,T., and Kiessling,R. (2004). CD4+ T cell-mediated HER-2/neu-specific tumor rejection in the absence of B cells. Int. J. Cancer 109, 259-264.
Liu,Y., el Ashry,D., Chen,D., Ding,I.Y., and Kern,F.G. (1995). MCF-7 breast cancer cells overexpressing transfected c-erbB-2 have an in vitro growth advantage in estrogen-depleted conditions and reduced estrogen-dependence and tamoxifen-sensitivity in vivo. Breast Cancer Res. Treat. 34, 97-117.
Liu,Y., Huang,H., Chen,Z., Zong,L., and Xiang,J. (2003). Dendritic cells engineered to express the Flt3 ligand stimulate type I immune response, and induce enhanced cytoxic T and natural killer cell cytotoxicities and antitumor immunity. J. Gene Med. 5, 668-680.
Lyman,S.D., James,L., Vanden Bos,T., de Vries,P., Brasel,K., Gliniak,B., Hollingsworth,L.T., Picha,K.S., McKenna,H.J., Splett,R.R., and . (1993a). Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75, 1157-1167.
Lyman,S.D., James,L., Zappone,J., Sleath,P.R., Beckmann,M.P., and Bird,T. (1993b). Characterization of the protein encoded by the flt3 (flk2) receptor-like tyrosine kinase gene. Oncogene 8, 815-822.
Lynch,D.H., Andreasen,A., Maraskovsky,E., Whitmore,J., Miller,R.E., and Schuh,J.C. (1997). Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat. Med. 3, 625-631.
MacGregor,R.R., Boyer,J.D., Ugen,K.E., Lacy,K.E., Gluckman,S.J., Bagarazzi,M.L., Chattergoon,M.A., Baine,Y., Higgins,T.J., Ciccarelli,R.B., Coney,L.R., Ginsberg,R.S., and Weiner,D.B. (1998). First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J. Infect. Dis. 178, 92-100.
Maraskovsky,E., Brasel,K., Teepe,M., Roux,E.R., Lyman,S.D., Shortman,K., and McKenna,H.J. (1996). Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184, 1953-1962.
Matthews,W., Jordan,C.T., Wiegand,G.W., Pardoll,D., and Lemischka,I.R. (1991). A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell 65, 1143-1152.
Meierhoff,G., Dehmel,U., Gruss,H.J., Rosnet,O., Birnbaum,D., Quentmeier,H., Dirks,W., and Drexler,H.G. (1995). Expression of FLT3 receptor and FLT3-ligand in human leukemia-lymphoma cell lines. Leukemia 9, 1368-1372.
Menard,S., Pupa,S.M., Campiglio,M., and Tagliabue,E. (2003). Biologic and therapeutic role of HER2 in cancer. Oncogene 22, 6570-6578.
Miller,G., Pillarisetty,V.G., Shah,A.B., Lahrs,S., Xing,Z., and DeMatteo,R.P. (2002). Endogenous granulocyte-macrophage colony-stimulating factor overexpression in vivo results in the long-term recruitment of a distinct dendritic cell population with enhanced immunostimulatory function. J. Immunol. 169, 2875-2885.
Murphy,A., Westwood,J.A., Teng,M.W., Moeller,M., Darcy,P.K., and Kershaw,M.H. (2005). Gene modification strategies to induce tumor immunity. Immunity. 22, 403-414.
Mwangi,W., Brown,W.C., Lewin,H.A., Howard,C.J., Hope,J.C., Baszler,T.V., Caplazi,P., Abbott,J., and Palmer,G.H. (2002). DNA-encoded fetal liver tyrosine kinase 3 ligand and granulocyte macrophage-colony-stimulating factor increase dendritic cell recruitment to the inoculation site and enhance antigen-specific CD4+ T cell responses induced by DNA vaccination of outbred animals. J. Immunol. 169, 3837-3846.
Nair,S.K., Hull,S., Coleman,D., Gilboa,E., Lyerly,H.K., and Morse,M.A. (1999). Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T- lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. Int. J. Cancer 82, 121-124.
Neumanaitis,J. (1993). Granulocyte-macrophage-colony-stimulating factor: a review from preclinical development to clinical application. Transfusion 33, 70-83.
Novo,F.J., Gorecki,D.C., Goldspink,G., and MacDermot,K.D. (1997). Gene transfer and expression of human α-galactosidase from mouse muscle in vitro and in vivo. Gene Ther. 4, 488-492.
Oelke,M., Moehrle,U., Chen,J.L., Behringer,D., Cerundolo,V., Lindemann,A., and Mackensen,A. (2000). Generation and purification of CD8+ melan-A-specific cytotoxic T lymphocytes for adoptive transfer in tumor immunotherapy. Clin. Cancer Res. 6, 1997-2005.
Parajuli,P., Pisarev,V., Sublet,J., Steffel,A., Varney,M., Singh,R., LaFace,D., and Talmadge,J.E. (2001). Immunization with wild-type p53 gene sequences coadministered with Flt3 ligand induces an antigen-specific type 1 T-cell response. Cancer Res. 61, 8227-8234.
Peachman,K.K., Rao,M., and Alving,C.R. (2003). Immunization with DNA through the skin. Methods 31, 232-242.
Peretz,Y., Zhou,Z.F., Halwani,F., and Prud'homme,G.J. (2002). In vivo generation of dendritic cells by intramuscular codelivery of FLT3 ligand and GM-CSF plasmids. Mol. Ther. 6, 407-414.
Pilon,S.A., Kelly,C., and Wei,W.Z. (2003). Broadening of epitope recognition during immune rejection of ErbB-2-positive tumor prevents growth of ErbB-2-negative tumor. J. Immunol. 170, 1202-1208.
Pizzirani,C., Ferrari,D., Chiozzi,P., Adinolfi,E., Sandona,D., Savaglio,E., and Di Virgilio,F. (2007). Stimulation of P2 receptors causes release of IL-1beta-loaded microvesicles from human dendritic cells. Blood 109, 3856-3864.
Pooley,J.L., Heath,W.R., and Shortman,K. (2001). Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J. Immunol. 166, 5327-5330.
Porgador,A., Irvine,K.R., Iwasaki,A., Barber,B.H., Restifo,N.P., and Germain,R.N. (1998). Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J. Exp. Med. 188, 1075-1082.
Prud'homme,G.J., Lawson,B.R., Chang,Y., and Theofilopoulos,A.N. (2001). Immunotherapeutic gene transfer into muscle. Trends Immunol. 22, 149-155.
Pupa,S.M., Bufalino,R., Invernizzi,A.M., Andreola,S., Rilke,F., Lombardi,L., Colnaghi,M.I., and Menard,S. (1996). Macrophage infiltrate and prognosis in c-erbB-2-overexpressing breast carcinomas. J. Clin. Oncol. 14, 85-94.
Randolph,G.J., Angeli,V., and Swartz,M.A. (2005). Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5, 617-628.
Robinson,S.P., Saraya,K., and Reid,C.D. (1998). Developmental aspects of dendritic cells in vitro and in vivo. Leuk. Lymphoma 29, 477-490.
Roche,P.C., Suman,V.J., Jenkins,R.B., Davidson,N.E., Martino,S., Kaufman,P.A., Addo,F.K., Murphy,B., Ingle,J.N., and Perez,E.A. (2002). Concordance between local and central laboratory HER2 testing in the breast intergroup trial N9831. J. Natl. Cancer Inst. 94, 855-857.
Rosnet,O., Marchetto,S., deLapeyriere,O., and Birnbaum,D. (1991). Murine Flt3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family. Oncogene 6, 1641-1650.
Salesse,S., Lagarde,V., Ged,C., de Verneuil,H., Reiffers,J., and Mahon,F.X. (2000). Retroviral coexpression of IFN-α and IFN- genes and inhibitory effects in chronic myeloid leukemia cells. J. Interferon Cytokine Res. 20, 577-587.
Schreurs,M.W., Eggert,A.A., de Boer,A.J., Figdor,C.G., and Adema,G.J. (1999). Generation and functional characterization of mouse monocyte-derived dendritic cells. Eur. J. Immunol. 29, 2835-2841.
Shaw,S.G., Maung,A.A., Steptoe,R.J., Thomson,A.W., and Vujanovic,N.L. (1998). Expansion of functional NK cells in multiple tissue compartments of mice treated with Flt3-ligand: implications for anti-cancer and anti-viral therapy. J. Immunol. 161, 2817-2824.
Shiau,A.L., Chen,C.C., Yo,Y.T., Chu,C.Y., Wang,S.Y., and Wu,C.L. (2005). Enhancement of humoral and cellular immune responses by an oral Salmonella choleraesuis vaccine expressing porcine prothymosin α. Vaccine 23, 5563-5571.
Shurin,M.R., Pandharipande,P.P., Zorina,T.D., Haluszczak,C., Subbotin,V.M., Hunter,O., Brumfield,A., Storkus,W.J., Maraskovsky,E., and Lotze,M.T. (1997). FLT3 ligand induces the generation of functionally active dendritic cells in mice. Cell Immunol. 179, 174-184.
Small,D., Levenstein,M., Kim,E., Carow,C., Amin,S., Rockwell,P., Witte,L., Burrow,C., Ratajczak,M.Z., Gewirtz,A.M., and . (1994). STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc. Natl. Acad. Sci. U. S. A 91, 459-463.
Stagg,J., Wu,J.H., Bouganim,N., and Galipeau,J. (2004). Granulocyte-macrophage colony-stimulating factor and interleukin-2 fusion cDNA for cancer gene immunotherapy. Cancer Res. 64, 8795-8799.
Street,S.E., Zerafa,N., Iezzi,M., Westwood,J.A., Stagg,J., Musiani,P., and Smyth,M.J. (2007). Host perforin reduces tumor number but does not increase survival in oncogene-driven mammary adenocarcinoma. Cancer Res. 67, 5454-5460.
Sumida,S.M., McKay,P.F., Truitt,D.M., Kishko,M.G., Arthur,J.C., Seaman,M.S., Jackson,S.S., Gorgone,D.A., Lifton,M.A., Letvin,N.L., and Barouch,D.H. (2004). Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J. Clin. Invest 114, 1334-1342.
Tan,M., Yao,J., and Yu,D. (1997). Overexpression of the c-erbB-2 gene enhanced intrinsic metastasis potential in human breast cancer cells without increasing their transformation abilities. Cancer Res. 57, 1199-1205.
Tatsumi,T., Huang,J., Gooding,W.E., Gambotto,A., Robbins,P.D., Vujanovic,N.L., Alber,S.M., Watkins,S.C., Okada,H., and Storkus,W.J. (2003). Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res. 63, 6378-6386.
Timmerman,J.M. and Levy,R. (1999). Dendritic cell vaccines for cancer immunotherapy. Annu. Rev. Med. 50, 507-529.
Tourkova,I.L., Yamabe,K., Chatta,G., Shurin,G.V., and Shurin,M.R. (2003). NK cells mediate Flt3 ligand-induced protection of dendritic cell precursors in vivo from the inhibition by prostate carcinoma in the murine bone marrow metastasis model. J. Immunother. 26, 468-472.
Tsurumi,Y., Takeshita,S., Chen,D., Kearney,M., Rossow,S.T., Passeri,J., Horowitz,J.R., Symes,J.F., and Isner,J.M. (1996). Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 94, 3281-3290.
Tu,C.F., Lin,C.C., Chen,M.C., Ko,T.M., Lin,C.M., Wang,Y.C., and Lai,M.D. (2007). Autologous neu DNA vaccine can be as effective as xenogenic neu DNA vaccine by altering administration route. Vaccine 25, 719-728.
Udvardi,A., Kufferath,I., Grutsch,H., Zatloukal,K., and Volc-Platzer,B. (1999). Uptake of exogenous DNA via the skin. J. Mol. Med. 77, 744-750.
Ulmer,J.B., Deck,R.R., DeWitt,C.M., Friedman,A., Donnelly,J.J., and Liu,M.A. (1994). Protective immunity by intramuscular injection of low doses of influenza virus DNA vaccines. Vaccine 12, 1541-1544.
Vremec,D., Pooley,J., Hochrein,H., Wu,L., and Shortman,K. (2000). CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164, 2978-2986.
Watanabe,M., Fenton,R.G., Wigginton,J.M., McCormick,K.L., Volker,K.M., Fogler,W.E., Roessler,P.G., and Wiltrout,R.H. (1999). Intradermal delivery of IL-12 naked DNA induces systemic NK cell activation and Th1 response in vivo that is independent of endogenous IL-12 production. J. Immunol. 163, 1943-1950.
Weeratna,R., Brazolot Millan,C.L., Krieg,A.M., and Davis,H.L. (1998). Reduction of antigen expression from DNA vaccines by coadministered oligodeoxynucleotides. Antisense Nucleic Acid Drug Dev. 8, 351-356.
Xiang,Z. and Ertl,H.C. (1995). Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity. 2, 129-135.
Xiang,Z.Q., Spitalnik,S., Tran,M., Wunner,W.H., Cheng,J., and Ertl,H.C. (1994). Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology 199, 132-140.
Yu,W.H., Kashani-Sabet,M., Liggitt,D., Moore,D., Heath,T.D., and Debs,R.J. (1999). Topical gene delivery to murine skin. J. Invest Dermatol. 112, 370-375.
Zhang,L. and Zhao,Y. (2007). The regulation of Foxp3 expression in regulatory CD4(+)CD25(+)T cells: multiple pathways on the road. J. Cell Physiol 211, 590-597.