| 研究生: |
蘇翔 Su, Hsiang |
|---|---|
| 論文名稱: |
早期聲音剌激對新生幼鼠發育之影響 Effects of neonatal sound exposure on brain development |
| 指導教授: |
潘偉豐
Poon, Wai-Fung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 早期聲音剌激 、新生幼鼠 、神經反射發育 、血管增加及輪廓改變 |
| 外文關鍵詞: | early sound exposure, neonatal rat, reflex development, angiogenesis, vascular remodeling |
| 相關次數: | 點閱:129 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
早期聲音剌激對新生幼鼠發育之影響
環境多樣性對「關鍵期」動物發育的影響,過去有不少學者提出研究論文予以証明。曾經提出過的包括聲音剌激對大白鼠大腦皮質會產生空間重整(spatial rearrangement )及神經可塑性(neuronal plasticity)的變化。但是其中聲音剌激在新生動物的效應及機轉並不清楚,此研究目的在探討新生幼鼠在P1~P21,使用連續聲音刺激(4 kHz、65dB SPL、23:00 ~ 07:00 ) 對中腦神經及血管系統發育的影響。 實驗期間 (P1~P21)我們發現幼鼠的體重及母鼠的攝水量均呈現增加。實驗組神經反射(righting、cliff avoidance、negative geotaxis、auditory startle and vibrissa placing )及身體發育(eye opening、incisor eruption & ear unfolding)較對照組來得早。實驗組幼鼠下丘有較大之血管表面總面積,個數以及密度。使用正切(tangential section)與傳統冠狀切(coronal section)方法比較檢體,發現正切方式在下丘本體血管表面總面積,個數以及密度表現都比傳統方式來得好。此外利用正切方式比較 IC 低頻區及高頻區血管總面積、個數以及密度,低頻區有顯著的血管增加及輪廓改變的現象。意味血管增加及輪廓改變與音訊有著相關性。以血管灌注為導向的切片方式,較能符合研究非平面血管發展的需求。對於連續聲音剌激對中腦神經及血管系統發育的生物標誌物,我們利用相同實驗條件測量包括血管內皮生長因子(VEGF),缺氧誘導因子-1α (HIF-1α)、突觸生長因子(synaptophysin) 以及 腦源性神經營養因子(BDNF)相關蛋白表現量以western blot以及ELISA 方式檢定。實驗組VEGF之 western blot以P8 時在IC表現較對照組為旺盛,在大腦皮質以P14較對照組為旺盛。此外實驗組IC synaptophysin 之 western blot 以P12、P14較對照組為高,並以P12為最高。 在大腦皮質對照組自第8天即較實驗組為高並在P14天為最高。 HIF-1α在所有組別中均無表現,可能與VEGF 出現沒有關聯性。ELISA 量測在IC看到BDNF在P8,P10,P12時較對照組高。ELISA 量測在大腦皮質看到VEGF及BDNF呈現P8及P14時較對照組大幅上揚的情形其中VEGF在P8更是上升近3倍。VEGF,synaptophysin及BDNF在實驗組較高的天數呈現上升可以指引日後對早期聲音剌激對新生幼鼠神經發育探討的進一步方向。
Effects of neonatal sound exposure on brain development
Effects of enriched environment during critical period have been discussed by varies scholars. These changes involved spatial rearrangement of cortical mapping and neuronal plasticity after sound exposure. However、effects of sound exposure during early postnatal period have not been investigated. This study focused on the neuronal and vascular changes at the auditory midbrain of neonatal rat pups after exposure to continuous tone (4 kHz、65dB SPL、23:00 pm ~ 07:00 am) during postnatal day one (P1) to postnatal day twenty-one (P21). Increased body and brain weights were recorded in exposure rat pups with simultaneous increase of water intake of the nursing mothers. Results showed earlier emergences of reflexes (righting、cliff avoidance、negative geotaxis、auditory startle and vibrissae placing) and body developments (incisor eruption、ear unfolding and eye opening) in exposed rat pups. Capillary changes in the inferior colliculus (IC) showed significant increase of vessels area、numbers & density in exposed rat pups. Sections from IC of rat pups were studied under two different angles (tangential vs. coronal) and micro vessel profiles compared after toluidine blue staining. Results showed that tangential sections produced higher counts in all three aspects of vessel profiles (surface area、density and round lumen counts). When comparing low frequency and high frequency laminas using tangential sections、significant increase of micro vessel profiles were noted in low frequency related zone. There is possibility of frequency related vascular remodeling at the low frequency area. Moreover、sectioning angle is critical in revealing microvasculature in the neural structures where arterial entry has an apparent anisotropic pattern. Biochemical markers for angiogenesis were investigated by harvesting tissues from the brain. Both the IC and the auditory cortex (AC) were studied、starting from P8 to P14 at two-days intervals. Tissues were examinated by western blotting and ELISA analysis. After sound exposure、we found higher VEGF in the IC on P8 but a higher VEGF in the AC on P14、as revealed by western blotting. For synaptophysin level at the IC、a gradual increase from P8 to P14 was found in exposed animals. The same pattern holds for synaptophysin expression at the AC of controls. There was no HIF-1α expression in any of our collected tissues suggesting no detectable correlation between VEGF and hypoxic drive in our animals. ELISA analysis for AC and IC showed higher concentration of VEGF and BDNF at P8 and P14 in exposed groups. For the IC、although BDNF showed higher concentrations at P8、P10 and P12 compared to controls、the differences were not statistically significant. Results showed a strong sound exposure effect in accelerating growth and development during the neonatal period as reflected in the emergence of reflexes、developmental landmarks and increase of microvasculature in the IC. Preliminary results on the neurochemical profiles were not conclusive in revealing the underlying mechanisms though VEGF、synaptophysin、and BDNF were likely involved.
References
1. Argandona、E. G. & Lafuente、J. V. Effects of dark-rearing on the vascularization of the developmental rat visual cortex. Brain Res 732、43-51、(1996).
2. Berardi、N.、Pizzorusso、T. & Maffei、L. Critical periods during sensory development. Curr Opin Neurobiol 10、138-145、(2000).
3. Leppelsack、H. J. Critical periods in bird song learning. Acta Otolaryngol Suppl 429、57-60 (1986).
4. Guerreiro、M.、Castro-Caldas、A. & Martins、I. P. Aphasia following right hemisphere lesion in a woman with left hemisphere injury in childhood. Brain Lang 49、280-288、(1995).
5. Arthur、B. I.、Jr.、Jallon、J. M.、Caflisch、B.、Choffat、Y. & Nothiger、R. Sexual behaviour in Drosophila is irreversibly programmed during a critical period. Curr Biol 8、1187-1190、(1998).
6. Feldman、D. E. & Knudsen、E. I. An anatomical basis for visual calibration of the auditory space map in the barn owl's midbrain. J Neurosci 17、6820-6837 (1997).
7. Pantev、C. Oostenveld、R.、Engelien、A.、Ross、B.、Roberts、L. E.、Hoke、M. Increased auditory cortical representation in musicians. Nature 392、811-814、(1998).
8. Levitt、P. Structural and functional maturation of the developing primate brain. J Pediatr 143、S35-45、(2003).
9. Greenough、W. T.、Black、J. E. & Wallace、C. S. Experience and brain development. Child Dev 58、539-559 (1987).
10. Webb、S. J.、Monk、C. S. & Nelson、C. A. Mechanisms of postnatal neurobiological development: implications for human development. Dev Neuropsychol 19、147-171 (2001).
11. Rampon、C.、Jiang、C. H.、Dong、H.、Tang、Y. P.、Lockhart、D. J.、Schultz、P. G.、Tsien、J. Z.、Hu、Y. Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci U S A 97、12880-12884、(2000).
12. Nilsson、M.、Perfilieva、E.、Johansson、U.、Orwar、O. & Eriksson、P. S. Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol 39、569-578、(1999).
13. Falkenberg、T.、Mohammed、A. K.、Henriksson、B.、Persson、H.、Winblad、B.、Lindefors、N. Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neurosci Lett 138、153-156、(1992).
14. Pham、T. M.、Soderstrom、S.、Winblad、B. & Mohammed、A. H. Effects of environmental enrichment on cognitive function and hippocampal NGF in the non-handled rats. Behav Brain Res 103、63-70、(1999).
15. Poon、P. W. & Chen、X. Postnatal exposure to tones alters the tuning characteristics of inferior collicular neurons in the rat. Brain Res 585、391-394、(1992).
16. Kelly、J. B. & Masterton、B. Auditory sensitivity of the albino rat. J Comp Physiol Psychol 91、930-936 (1977).
17. Heffner、H. E.、Heffner、R. S.、Contos、C. & Ott、T. Audiogram of the hooded Norway rat. Hear Res 73、244-247 (1994).
18. Rybalko、N. & Syka、J. Susceptibility to noise exposure during postnatal developments in rats. Hearing research 155、32-40 (2001).
19. Zhang、L. I.、Bao、S. & Merzenich、M. M. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat Neurosci 4、1123-1130、(2001).
20. Chang、E. F. & Merzenich、M. M. Environmental noise retards auditory cortical development. Science 300、498-502、(2003).
21. Fisch、L. The selective and differential vulnerability of the auditory system. In: Sensorineural hearing loss. Ciba Found Symp、101-126 (1970).
22. Craigie、E. H. The Blood Vessels in the Central Nervous System of the Kangaroo. Science 88、359-360、(1938).
23. Landau、W. M.、Freygang、W. H.、Jr.、Roland、L. P.、Sokoloff、L. & Kety、S. S. The local circulation of the living brain; values in the unanesthetized and anesthetized cat. Trans Am Neurol Assoc、125-129 (1955).
24. Sokoloff、L.、Reivich、M.、Kennedy、C.、Des Rosiers、M. H.、Patlak、C.、S. Pettigrew、K. D.、Sakurada、O.、Shinohara、M. The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory、procedure、and normal values in the conscious and anesthetized albino rat. J Neurochem 28、897-916 (1977).
25. Smart、J. L. & Dobbing、J. Vulnerability of developing brain. II. Effects of early nutritional deprivation on reflex ontogeny and development of behaviour in the rat. Brain Res 28、85-95、(1971).
26. Chiu、T. W.、Poon、P. W.、Chan、W. Y. & Yew、D. T. Long-term changes of response in the inferior colliculus of senescence accelerated mice after early sound exposure. J Neurol Sci 216、143-151、(2003).
27. Flagel、S. B.、Vazquez、D. M.、Watson、S. J.、Jr. & Neal、C. R.、Jr. Effects of tapering neonatal dexamethasone on rat growth、neurodevelopment、and stress response. American journal of physiology 282、R55-63 (2002).
28. Haubner、L. Y.、Stockard、J. E.、Saste、M. D.、Benford、V. J.、Phelps、C. P. Chen、L. T.、Barness、L.、Wiener、D.、Carver、J. D. Maternal dietary docosahexanoic acid content affects the rat pup auditory system. Brain
Res Bull 58、1-5、(2002).
29. Schreiner、C. E. & Langner、G. Laminar fine structure of frequency organization in auditory midbrain. Nature 388、383-386、(1997).
30. Ogunshola、O. O.、Stewart、W. B.、Mihalcik、V.、Solli、T.、Madri、J. A.、 Ment、L. R . Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res Dev Brain Res 119、139-153、(2000).
31. Davis、M.、Gendelman、D. S.、Tischler、M. D. & Gendelman、P. M. A primary acoustic startle circuit: lesion and stimulation studies. J Neurosci 2、791-805 (1982).
32. Crowley、E.D.、Hepp-Reymond & C.、M. Development of cochlear function in the ear of the infant rat. J Comp Physiol Psychol. 62、427-432 (1966).
33. Sambraus、H. H. & Hecker、P. A. [Effect of sound on milk production in cows]. Berl Munch Tierarztl Wochenschr 98、298-302 (1985).
34. Bredy、T. W.、Grant、R. J.、Champagne、D. L. & Meaney、M. J. Maternal care influences neuronal survival in the hippocampus of the rat. Eur J Neurosci 18、2903-2909、(2003).
35. Krebs、H.、Macht、M.、Weyers、P.、Weijers、H. G. & Janke、W. Effects of stressful noise on eating and non-eating behavior in rats. Appetite 26、193-202、(1996).
36. Heffner、H. E. & Heffner、R. S. Hearing ranges of laboratory animals. J Am Assoc Lab Anim Sci 46、20-22 (2007).
37. Nakahara、H.、Zhang、L. I. & Merzenich、M. M. Specialization of primary auditory cortex processing by sound exposure in the "critical period". Proc Natl Acad Sci USA 101、7170-7174、(2004).
38. Denenberg、V. H.、Brumaghim、J. T.、Haltmeyer、G. C. & Zarrow、M. X. Increased adrenocortical activity in the neonatal rat following handling. Endocrinology 81、1047-1052 (1967).
39. Shatz、L. F. & Christensen、C. W. The frequency response of rat vibrissae to sound. J Acoust Soc Am 123、2918-2927、(2008).
40. Munger、B. L. & Rice、F. L. Successive waves of differentiation of cutaneous afferents in rat mystacial skin. J Comp Neurol 252、404-414、(1986).
41. Shishelova、A. Y. Effect of whisker removal on defensive behavior in rats during early ontogenesis. Neurosci Behav Physiol 36、883-888、(2006).
42. Baum、M. J.、Bressler、S. C.、Daum、M. C.、Veiga、C. A. & McNamee、C. S. Ferret mothers provide more anogenital licking to male offspring: possible contribution to psychosexual differentiation. Physiol Behav 60、353-359、(1996).
43. Moore、C. L. Maternal contributions to the development of masculine sexual behavior in laboratory rats. Dev Psychobiol 17、347-356、(1984).
44. Anderson、C. O.、Denenberg、V. H. & Zarrow、M. X. Effects of handling and social isolation upon the rabbit's behaviour. Behaviour 43、165-175 (1972).
45. Cremer、J. E.、Cunningham、V. J. & Seville、M. P. Relationships between extraction and metabolism of glucose、blood flow、and tissue blood volume in regions of rat brain. J Cereb Blood Flow Metab 3、291-302 (1983).
46. Andrew、D. L. & Paterson、J. A. Postnatal development of vascularity in the inferior colliculus of the young rat. Am J Anat 186、389-396、(1989).
47. Faye-Lund、H. Anatomic of the inferior colliculus in rat. Anat Embryol (Berl) 175、35-52 (1985).
48. Boero、J. A.、Ascher、J.、Arregui、A.、Rovainen、C. & Woolsey、T. A. Increased brain capillaries in chronic hypoxia. J Appl Physiol 86、1211-1219 (1999).
49. Iwagaki、T.、Suzuki、T. & Nakashima、T. Development and regression of cochlear blood vessels in fetal and newborn mice. Hear Res 145、75-81、(2000).
50. Krasnoperov、R. A. & Gerasimov、A. N. Probability density functions for axial ratios of sectioning profiles of anisotropically arranged elliptical microvessels. Math Biosci 219、97-103、(2009).
51. Krasnoperov、R. A. & Stoyan、D. Spatial correlation analysis of isotropic microvessels: methodology and application to thyroid capillaries. Ann Biomed Eng 34、810-822、(2006).
52. Storkebaum、E. & Carmeliet、P. VEGF: a critical player in neurodegeneration. J Clin Invest 113、14-18、(2004).
53. Hayashi、T.、Abe、K. & Itoyama、Y. Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab 18、887-895、(1998).
54. Jin、K. L.、Mao、X. O. & Greenberg、D. A. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci U S A 97、10242-10247、(2000).
55. Jin、K. L.、Mao、X. O. & Greenberg、D. A. Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal. J Mol Neurosci 14、197-203、(2000).
56. Matsuzaki、H. et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. FASEB J 15、1218-1220 (2001).
57. Oosthuyse、B.、Moons、L.、Storkebaum、E.、Beck、H. et al. Deletion
of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28、131-138、(2001).
58. Acker、T.、Beck、H. & Plate、K. H. Cell type specific expression of vascular endothelial growth factor and angiopoietin-1 and -2 suggests an important role of astrocytes in cerebellar vascularization. Mech Dev 108、45-57、(2001).
59. Nakahashi、T.、Fujimura、H.、Altar、C. A.、Li、J.、Kambayashi、J.、Tandon、N. N.、Sun、B. Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett 470、113-117、(2000).
60. Jahn、R.、Schiebler、W.、Ouimet、C. & Greengard、P. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A 82、4137-4141 (1985).
61. Sze、C. I.、Troncoso、J. C.、Kawas、C.、Mouton、P.、Price、D. L.、Martin、 L. J . Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 56、933-944 (1997).
62. Heffernan、J. M.、Eastwood、S. L.、Nagy、Z.、Sanders、M. W.、McDonald、B.、Harrison、P. J. et al. Temporal cortex synaptophysin mRNA is reduced in Alzheimer's disease and is negatively correlated with the severity of dementia. Exp Neurol 150、235-239、(1998).
63. Gil-Loyzaga、P.、Bartolome、M. V. & Ibanez、A. Synaptophysin immunoreactivity in the cat cochlear nuclei. Histol Histopathol 13、415-424 (1998).
64. Sarnat、H. B. & Born、D. E. Synaptophysin immunocytochemistry with thermal intensification: a marker of terminal axonal maturation in the human fetal nervous system. Brain Dev 21、41-50、(1999).
65. Wang、G. L.、Jiang、B. H. & Semenza、G. L. Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor 1. Biochem Biophys Res Commun 212、550-556、(1995).
66. Ebert、R. H.、2nd Shammas、M. A.、Sohal、B. H.、Sohal、R. S.、Egilmez、 N. K.、Ruggles、S.、Shmookler Reis、R. J.. Defining genes that govern longevity in Caenorhabditis elegans. Dev Genet 18、131-143、(1996).
67. Huang、L. E.、Gu、J.、Schau、M. & Bunn、H. F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95、7987-7992 (1998).
68. Wiener、C. M.、Booth、G. & Semenza、G. L. In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun 225、485-488、(1996).
69. Ruscher、K.、Isaev、N.、Trendelenburg、G.、Weih、M.、Iurato、L.、Meisel,A.、Dirnagl、U Induction of hypoxia inducible factor 1 by oxygen glucose deprivation is attenuated by hypoxic preconditioning in rat cultured neurons. Neurosci Lett 254、117-120、(1998).
70. Jin、K. L.、Mao、X. O.、Nagayama、T.、Goldsmith、P. C. & Greenberg、D. A. Induction of vascular endothelial growth factor and hypoxia-inducible factor-1alpha by global ischemia in rat brain. Neuroscience 99、577-585、(2000).
71. Bergeron、M.、Yu、A. Y.、Solway、K. E.、Semenza、G. L. & Sharp、F. R. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 11、4159-4170、(1999).
72. Yamada、K.、Mizuno、M. & Nabeshima、T. Role for brain-derived neurotrophic factor in learning and memory. Life Sci 70、735-744 (2002).
73. Committee on Environmental Health. Noise: A Hazard for the Fetus and Newborn. Pediatrics 100、724-727 (1997)
74.Huang、C.M.、Fex、J. Tonotopic organization in the inferior colliculus of the rat demonstrated with the 2-deoxyglucose method. Exp Brain Res 61、506-512 (1966)
75.Poon、W.F.、Chen、X.、Hwang、J.C. Altered sensitivities of auditory neurons in the rat midbrain following early postnatal exposure to patterned sounds. Brain Res 524、327-329、(1992).
76.Lu、H. P.、Chen、S. T.、Poon、P. W. Enlargement of neuronal size in rat auditory cortex after prolonged sound exposure. Neurosci Lett 463、145-9、(2009).
77.Poon、P.W.F.、Sun、X.、Kamada、T.、Jen、P.H.S. Frequency and space representation in the inferior colliculus of the FM bat、Eptesicus fuscus. Exp Brain Res 79、83-91(1990)