| 研究生: |
黃昱諺 Huang, Yu-Yen |
|---|---|
| 論文名稱: |
微型立體線圈及其在DNA操縱之應用 Micro 3-D Coils and Their Applications on Manipulation of DNA Molecules |
| 指導教授: |
李輝煌
Lee, Huei-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 奈米科技 、DNA操縱技術 、單分子DNA 、磁性捕捉器 、磁性合金 、微型電磁鐵 、3-D微型立體磁箝 、微機電系統 、田口品質設計方法 |
| 外文關鍵詞: | Ring trapper, Single DNA molecule, DNA manipulation, 3-D micromachind magnetic tweezers, MEMS, Nano technology |
| 相關次數: | 點閱:126 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用微機電系統製程(Micro-Electro-Mechanical-System, MEMS),成功設計製作3D立體微型磁箝,可以操縱奈米尺度的單一DNA分子,達到拉伸單一DNA分子之操縱,以觀察測量DNA分子之物理機械性質。
設計製作之3D立體微型磁箝包含:微型電磁鐵、磁性捕捉器、微流管道等元件。利用田口品質設計方法使磁性合金之電鍍最佳化,降低鍍面之粗糙度,並透過生化修飾,將單一DNA分子兩端分別鍵結直徑為2.8 μm與直徑為1.0 μm的超順磁性磁珠,其中一端之磁珠已經硫醇基修飾,另一端則無。兩端分別鍵結磁珠的單一DNA分子樣品經由蠕動式幫浦輸送到微流管道,當DNA分子到達操作區上方,經由電源供應器施予磁性捕捉器直流電流,產生磁場吸引鍵結磁珠之DNA分子至金表面,已經硫醇基修飾之磁珠與金表面產生共價鍵結,關閉磁性捕捉器之電流後,未經修飾硫醇基之磁珠懸浮在工作溶液中,依序分別施加直流電流給微型電磁鐵,產生磁場吸引懸浮之磁珠,達到拉伸DNA分子之多樣性操縱。微型電磁鐵可產生20pN以上的磁力,將單一DNA分子拉伸至它整個全長以上而不會伴隨有明顯的焦耳熱。DNA分子操縱實驗中,也拉伸了鍵結有兩條DNA分子的磁珠,而DNA也呈現出高度的非線性行為。
此3-D微型立體磁箝除了單一DNA分子之操縱外,仍有其他生物應用之潛能,可以將此操縱平台應用在不同之有機線材的研究,例如蛋白質或細胞之研究,透過磁珠鍵結細胞與施加磁場,來觀察細胞。應用此3-D微型立體磁箝操縱平台於生命科學與奈米科技領域。
This study designed and fabricated 3-D micromachined magnetic tweezers using MEMS(Micro-Electro-Mechanical-System)technology capable of manipulating a single DNA molecule. The key components, include 6 micro-electromagnets, a ring trapper, a fluidic channel and a gold-patterned surface that can be integrated to form a micromachined-based DNA manipulation platform. The micro-electromagnets can exert a magnetic force over 20 pN with little heating to extend a DNA molecule over the whole contour length.
One end of the DNA molecule was bound to a thiol-modified magnetic bead with a diameter of 1.0 μm. The other extremity of the DNA molecule was bound to an unmodified magnetic bead with a diameter of 2.8 μm. A syringe pump was used to transport the DNA sample into the micromachined DNA manipulation platform. Then, the magnetic beads tethered to the DNA molecule were attracted to the gold-patterned surface by the ring trapper. The thiol-modified magnetic bead was immobilized on the gold surface due to the Au-S covalent bonds. When the current of the ring trapper was turned off, the bead with non-specific binding was then suspended in the buffer solution. The suspended magnetic bead could be manipulated within the magnetic field generated by micro-electromagnets.
In conclusion, this novel DNA manipulation platform was used to observe the physiological behavior of DNA and investigate its physical properties. The proposed approach will offer a new tool for the field of nano-technology, which will make substantial impacts on development a new nano-scale materials and improve our understanding of intriguing structures.
1. R. P. Feynman, “There’s Plenty of Room at the Bottom,” Journal of Micro Electro Mechanical Systems, Vol. 1, pp. 60-66, 1992.
2. R. P. Feynman, “Infinitesimal Machinery,” Journal of Micro Electro Mechanical Systems, Vol.2, pp. 4-141, 1993.
3. 邱祈翰, “單分子DNA微型磁箝操縱平台之研發,” 國立成功大學工程科學系博士論文,2005。
4. S. Chu, “Laser manipulation of atoms and particles,” Science, Vol. 253, pp. 861-866, 1991.
5. T. T. Perkins, D. Smith, and S. Chu, ”Direct observation of tube-like motion of a single polymer chain,” Science, Vol. 264, pp. 819-822, 1994.
6. T. T. Perkins, S. Quake, D. Smith, and S. Chu, “Relaxation of a single DNA molecule observed by optical microscopy,” Science, Vol. 264, pp. 822-826, 1994.
7. C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, “Entropic elasticity of lambda-phage DNA,” Science, Vol. 265, pp. 1599-600, 1994.
8. S. B. Smith, Y. Chi, C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science, Vol. 271, pp.795-799, 1996.
9. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. Viovy, D. Chatenay, and F. Caron, “DNA: an extensible molecule,” Science, Vol. 271, pp. 792-794, 1996.
10. J. F. Leger, J. Robert, L. Bourdieu, D. Chatenay, J. F. Marko, “Rec A binding to a single double-stranded DNA molecule: a possible role of DNA conformational fluctuations,” Proc. Natl. Acad. Sci. USA, Vol. 95, pp. 12295-12296, 1998.
11. G. V. Shivashankar, and A. Libchaber, “Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezers,” Appl. Phys. Lett, Vol. 71, pp. 3727-3729, 1997.
12. D. Bensimon, A. J. Simon, A. Chiffaudel, V. Croquette, F. Heslot, and D. Bensimon, “Alignment and sensitive detection of DNA by a moving interface,” Science, Vol. 265, pp. 2096-2098, 1994.
13. P. S. Doyle, B. Ladoux, and J. L. Viovy, “Dynamics of a tethered polymer in shear flow,” Phys. Rev. Let, Vol. 84, pp. 4769-4772, 2000.
14. J, Han, and H. G. Craighead, “Entropic trapping and sieving of long DNA molecules in a nanofluidic channel,” J. Vac. Sci. Technol. A, Vol. 17, pp. 2142-2147, 1999.
15. M. Washizu, O. Kurosawa, I. Arai, S. Suzuki, and N. Shimamoto, “Applications of electrostatic stretch-and-positioning of DNA,” IEEE Trans. Ind. Appl, Vol. 31, pp. 447-456, 1995.
16. T. Strick, J. F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette, “The elasticity of a single supercoiled DNA molecule,” Science, Vol. 271, pp. 1835-1837, 1996.
17. C. Haber, and D. Wirtz, “Magnetic tweezers for DNA micromanipulation,” Rev. Sci. Instrum, Vol. 71, pp. 4561-4570, 2000.
18. C. Gosse, and V. Croquette, “Magnetic tweezers: Micromanipulation and force measurement at the molecular level,” Biophys. J, Vol. 82, pp. 3314-3329, 2002.
19. Wenjin Zhang, and C. H. Ahn, “A microfabricated planar magnetic particle separator with optically inspectable flow channel,” IEEE Engineering in Medicine and Biology Society, Vol. 1, pp. 252-253, 1996.
20. H. Lee, A. M. Purdon, V. Chu, and R. M. Westervelt, “Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays,” Nano Letters, Vol. 4, pp. 995-998, 2004.
21. J. W. Choi, T. M. Liakopoulos, and C. H. Ahn, “An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy,” Biosens. Bioelectron, Vol. 16, pp. 409-416, 2001.
22. J. W. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall, J. H. Nevin, A. J. Helmicki, H. T. Henderson, and C. H. Ahn, “An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities,” Lab Chip, Vol. 2, pp. 27-30, 2002.
23. A. Rida, V. Fernandez, and M. A. M. Gijs, “Planar coil-based microsystemfor the long-range transport of magnetic beads,” Transducers, Vol. 1, pp. 292-295, 2003.
24. C. H. Chiou, and G. B. Lee, “A micromachined DNA manipulation platform for the stretching and rotation of a single DNA molecule,” J. Micromech. Microeng, Vol. 15, pp. 109-117, 2005.
25. C. H. Ahn, M. G. Allen, Y. N. Jun, W. Trimmer, and S. Erramilli, “A fully integrated micromachined magnetic particle separator,” IEEE Journal of Microelectromechanical Systems, Vol. 5, pp. 151-158, 1996.
26. J. Park, M. G. Allen, C. H. Ahn, M. G. Allen, “A comparison of micromachined inductors with different magnetic core materials,” IEEE International Conference on Electronic Components and Technology, 1996
27. R. Rong, J. W. Choi, and C. H. Ahn, “A functional magnetic bead/biocell sorter using fully integrated magnetic micro/nano tips,” IEEE MEMS , pp. 530-533, 2003.
28. 莊達人, “VLSI製造技術,” 高立圖書有限公司, 第五版, 2003。
29. 張金全, “電鍍工程學,” 五洲出版社, 1967。
30. 李輝煌, “田口方法品質設計的原理與實務,” 高立圖書有限公司, 第二版, 2004。
31. M. H. Chiang, Y. Y. Huang, C. H. Chiou, H. H. Lee, and G. B. Lee, “A new micromachine-based magnetic tweezers for manipulation of DNA molecules,” 1st International Conference on Bio-Nano-Informatics (BNI) Fusion Accepted for publishing, 2005.
32. C. Haber, and D. Wirtz, “Magnetic tweezers for DNA micromanipulation,”Rev. Sci. Instrum. Vol. 71, pp. 4561-4570, 2000.