簡易檢索 / 詳目顯示

研究生: 林晉傑
Lin, Jin-Jie
論文名稱: 電滲流在微流體晶片之聚焦/切換與混合研究
Study of Electrokinetic Flow Focusing/Switching and Mixing in Microfluidic Chips
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 86
中文關鍵詞: 電動不穩定
外文關鍵詞: Electrokinetic instability
相關次數: 點閱:50下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文利用電驅動流體的方式,以操控樣品之流動及樣品之混合,作為生物分析的應用研究。晶片的製造採用常見的微影和化學蝕刻過程,再以高溫熔融的方式結合晶片。本文分為兩大部分:第一部分稱為微流體進樣晶片、第二部分稱為微流體混合晶片。
      微流體進樣晶片中,我們設計一個單一微流體進樣晶片(1×N微流體進樣晶片),利用不同的電壓控制,驅使單一樣品流到不同出口槽。再將其觀念擴展到多個入口槽與出口槽(M×N微流體進樣晶片),做更多不同的操控。實驗結果指出,樣品流皆能以電動力驅動,再經由側邊管道的集中,引導至所要求的出口槽,並成功的減少電壓控制的操作點。
      微流體混合晶片中,我們設計兩種不同的混合方式,第一種利用交流電與直流電場的交互作用,試著改變流場的流動狀態驅使液體產生混合。實驗結果指出,使用交流、直流電場所產生的混合效果並不顯著,液體間大部份依靠擴散效應混合。第二種則是在入口兩端加入不同電導濃度的液體,並施加一定的電場強度,使其產生電動不穩定的現象來混合液體。實驗結果指出,利用電動不穩定現象的混合效果佳,並可大幅減少混合區域的長度,而液體間的混合依靠對流及擴散效應。

     This study presents experimental investigations into electrokinetic focusing flow injection and electrokinetic flow mixing for bio-analytical applications. Microfluidic chips were fabricated in glass substrates using conventional photolithographic and chemical etching process, and then the chip was bonded via a high-temperature fusion method.
     For electrokinetic focusing injection technique, we design a novel single microfluidic device possesses two injection techniques for microfluidic sample handing. Therefore, the device not only control single sample flows into different outlet considered in the current operational condition but also the multi-sample injection into specific outlet ports. The experimental results indicated that the sample flow could be electrokintcally pre-focusing to a narrow stream and then guided into a desired outlet port and successfully reduced control devices of the voltage in the microfluidic chip.
     Furthermore, electrokinetic micro-mixing was also investigated in the current study. First, AC sinusoidal electric field perturbation enhanced electrokinetic flow mixing in a T-type microfluidic chip was presented. Experimental results indicated the mixing efficiency increased insignificantly using AC electric field. Second, electrokinetic flows with electrical conductivity gradient in a T-type channel under DC electric field was investigated and used to enhance the electrokinetic mixing in microchannels. When the electrical conductivity gradient exists in the bulk fluid, there is net charge density in the bulk liquid away from electrical double layer (EDL). As the electric field strength achieves the critical value, the flow field is unstable and chaotic. Therefore, the mixing efficiency can be enhanced significantly under this mechanism.
     Finally, the microfluidic chips presented within this study possess an exciting potential for use in a variety of techniques, including high-throughput chemical analysis, cell fusion, fraction collection, fast sample mixing, and many other applications within the micro-total-analysis systems field.

    目錄 中文摘要 І 英文摘要 Π 致謝 ІV 目錄 V 表目錄 ІX 圖目錄 X 符號說明 XVI 第一章 緒 論 01 1.1 前言 01 1.2 微機電系統 01 1.3 微流體 03 1.4 本文架構 04 第二章 材料與方法 06 2.1 基礎理論 06 2.1.1 電雙層 07 2.1.2 電滲流 08 2.2 光罩製作 09 2.3 晶片製作 10 2.3.1 晶片清洗 10 2.3.2 光阻塗佈 11 2.3.3 曝光 11 2.3.4 顯影 11 2.3.5 蝕刻 12 2.3.6 去除光阻 12 2.3.7 玻璃晶片鑽孔、清洗、對位、及熔接接合 12 2.4 實驗觀測與操作設備、材料 12 2.4.1 顯微鏡 12 2.4.2 電腦影像擷取系統 13 2.4.3 電源供應器 13 2.4.4 實驗方法 13 第三章 微流體進樣晶片 15 3.1 研究動機 15 3.2 文獻回顧 16 3.3 微流體進樣裝置 18 3.3.1 1×N微流體進樣裝置 18 3.3.2 1×N微流體進樣裝置之幾何尺寸設計 18 3.3.3 M×N微流體進樣裝置 19 3.3.4 M×N微流體進樣裝置之幾何尺寸設計 19 3.4 結果 20 3.4.1 1×N微流體進樣晶片結果 20 3.4.2 M×N微流體進樣晶片結果 21 3.4.2.1 進樣模式一 21 3.4.2.2 進樣模式二 22 3.4.2.3 進樣模式三 22 3.5 討論 23 第四章 微流體混合晶片 24 4.1 研究動機 24 4.2 文獻回顧 24 4.3 微流體混合裝置 27 4.3.1 T字型微流體混合裝置之幾何尺寸設計 27 4.4 結果 27 4.4.1 使用交、直流電場混合 28 4.4.2 使用電動不穩定現象混合 28 4.5 討論 29 第五章 總結及未來展望 31 5.1 結論 31 5.2 展望 32 參考文獻 33 附錄一 RCA潔淨製程 76 附錄二 微影製程 77 附錄三 其它現象討論 83 自述 85 著作 86

    參考文獻

    [01] Auroux P. A., Reyes D. R., Iossifidis D. and Manz A., “Micro total analysis systems: 2. analytical standard operations and applications, ” Analytical Chemistry, 74, 2637-52, 2002.
    [02] Bau H. H., Zhong J. and Yi M., “A minute magneto hydro (MHD) mixer.” Sensors and Actuators B, 79, 207-215, 2001.
    [03] Blankenstein G., Scampavia L., Brangebjerg J., Larsen U. D. and Ruzicka J., “Flow switch for analyte injection and cell/particle sorting,” Proceedings 2nd International Symposium μTAS96, 82-84, 1996.
    [04] Cohen A. S. and Karger B. L., “High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins,” Journal of Chromatography A, 397, 409-417, 1987.
    [05] Döring C., Grauer T., Marek J., Mettner M., Trah H. P. and Willman M., “Micromachined thermoelectrically driven cantilever beams for fluid deflection,” Proc. IEEE Micro Electro Mechanical Systems Workshop, MEMS, 12-18, 1992.
    [06] Effenhauser C. S. and Manz A., “Manipulation of sample fraction on a capillary electrophoresis chip,” Analytical Chemistry, 67, 2284-2287, 1995.
    [07] Erbacher C., Bessoth F., Busch M., Verpoorte E. and Man A., “Towards integrated continuous-flow chemical reactors, ” Mikrochirmca Acta, 131, 19–24, 1999.
    [08] Fan Z. H. and Harrison D. J., “Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections,” Analytical Chemistry, 66, 177-184, 1994.
    [09] Freyer J. P., Wilder M. E., Schor P. L. and Coulter J. M. R., “A simple electronic volume cell sorter for clonogenicity assays,” Cytometry, 10, 273-281, 1989.
    [10] Gravsen P., Branebjerg O. J. and Jensen S., “Microfluidics- a review,” Journal of Micromechanics and Microengineering, 3, 168-182, 1993.
    [11] Harrison D. J., Manz A. and Ludi Z. H., “Capillary electrophoresis and sample injection systems integrated on a planar glass chip,” Analytical Chemistry, 64, 1926-1932, 1992.
    [12] Harrison D. J. and Berg A., “Micro total analysis systems ’98,” Kluwer Academic Publishers, Netherlands 1998.
    [13] Hjerten S., “Free zone electrophoresis,” Chromatographic Reviews, 9, 122-219, 1967.
    [14] Hjerten S., Liao J. L. and Yao K. J., “Theoretical and experimental study of high performance electrophoretic mobilization of isoelectric focused protein zones,” Journal of Chromatography A, 387, 127-138, 1987.
    [15] Hunter R. J., “Zeta Potential in Colloid Science: Principles and Applications,” Academic Press, New York, 1981.
    [16] Jorgenson J. W. and Lukacs K. D., “Zone electrophoresis in open-tubular glass capillaries,” Analytical Chemistry, 53, 1298-1302, 1981.
    [17] Kakuta M., Bessoth F. G. and Manz A., “Microfabricated devices for fluid mixing and their application for chemical synthesis,” Chemical Record, 1, 395-405, 2001.
    [18] Larsen U. D., Blankenstein G. and Brangebjerg J., “A novel design in chemical and biochemical liquid analysis system,” Proc. 2nd Int. Symp. μTAS96, 113-115, 1996.
    [19] Laser D. J. and Santiago J. G. “A review of micropumps,” Journal of Micromechanics and Microengineering, 14, R35-64. 2004.
    [20] Lee G. B., Hung C. I., Ke B. J., Huang G. R. and Hwei B. H., “Micromachined pre-focused 1×N flow switches for continuous sample injection,” Journal of Micromechanics and Microengineering, 11, 567-573, 2001.
    [21] Lee G. B., Hwei B. H. and Huang G. R., “Micromachined pre-focused M×N flow switch for continuous sample injection,” Journal of Micromechanics and Microengineering, 11, 654-661, 2001.
    [22] Lee G. B., Lin C. H. and Chang G. L., “Micro flow cytometers with buried su-8/sog optical waveguides,” Sensors and Actuators A, 103, 165-170, 2002.
    [23] Lemoff A. V. and Lee A. P., “An ac magnetohydrodynamic microfluidic switch,” Proceedings Total Analysis Systems 2000.
    [24] Lin G. H., Lee G. B., Lin Y.H., Chang G. L., “A fast prototyping process for fabrication of microfluidic systems on soda-lime glass,” Journal of Micromechanics and Microengineering, 11, 726-732, 2001.
    [25] Mala G. M., and Li D., “Flow characteristics of water in microtubes,” International Journal of Heat and Fluid Flow, 20, 142-148, 1999.
    [26] Manz A., Graber N. and Widmer H.M., “Miniaturized Total Chemical Analysis System: A Novel Concept for Chemical Sensing,” Sensors and Actuators B, 1, 244-248, 1990.
    [27] Melin J., Giménez G., Roxhed N., Wijungaart W. V. D. and Stemme G., “A fast passive and planar liquid sample micromixer.” Biology and Bioengineering, 4, 214-219, 2004.
    [28] Moctar A. O. E., Aubry N. and Batton J., “Electro-hydrodynamic micro-fluidic mixer.” Lab on a Chip, 3, 273-280, 2003.
    [29] Nguyen N. T., Huang X. Y. and Toh K. C., “MEMS–micropumps: a review ASME trans. ” Journal of Fluids Engineering, 124, 384-92, 2002.
    [30] Nguyen N. T. and Wereley S. T. “Fundamentals and applications of microfluidics,” Boston: Artech House, 2002.
    [31] Okkels F. and Tabeling P., “Spatiotemporal resonances in mixing of open viscous fluids.” Physical Review Letters, 92, 038301, 2004.
    [32] Otsuka S., Terabe. K.,Tsuchiya A. and Ando T., “Electrokinetic separation with micellar soulution and open-tubular capillaries,” Analytical Chemistry, 567, 111-113, 1984.
    [33] Pan Y. J., Lin J. J., Luo W. J. and Yang R. J., “Sample flow switching techniques on microfluidic chips.” Submitted to the Biosensors and Bioelectronics.
    [34] Papautsky I., Brazzle J., Ameel T. A. and Frazier A. B., “Laminar fluid behavior in microchannels using micropolar fluid theory,” Sensors and Actuators A, 73, 101-283, 1999.
    [35] Park S. J., Kim J. K., Park J., Chung S., Chung C. and Chang J. K., “Rapid three-dimensional passive rotation micromixer using the breakup process.” Journal of Micromechanical and Microengineering, 14, 6-14, 2004.
    [36] Peng X. F., Peterson G. P. and Wang B. X., “Fritional flow characteristics of water flowing through rectangular microchannel,” Experimental Heat Transfer, 7, 249-264, 1994.
    [37] Peng X. F., Peterson G. P. and Wang B. X., “Heat transfer characteristics of water flowing through microchannel,” Experimental Heat Transfer, 7, 265-283, 1999.
    [38] Probstein R. F., “Physicochemical hydrodynamics: an introduction,” 2nd ed., John Wiley and Sons, New York, 1994.
    [39] Qu W., Mala G. M. and Li D., “Pressure-driven water flows in trapezoidal silicon microchannels,” International Journal of Heat and Fluid Flow, 43, 353-364, 2000.
    [40] Reyes D. R., Iossifidis D., Auroux P. A. and Manz A., “Micro total analysis systems: 1. introduction, theory, and technology, ” Analytical Chemistry, 74, 2623-2636, 2002.
    [41] Russel W. B., Saville D. A. and Schowalter W. R., “Colloid science: principles and applied mathematics,” Cambridge University Press, Cambridge, 1989.
    [42] Schrum D. P., Culbertson C.T., Jacobson S.T. and Ramsey J. M., “Microchip flow cytometry using electorokinetic focusing,” Analytical Chemistry, 71, 4173-4177, 1999.
    [43] Seiler K., Harrison D. J. and Manz A., “Planar glass chip for capillary electrophoresis: repetitive sample injection, quantitation, separation efficiecy,” Analytical Chemistry, 65, 1481-1488, 1993.
    [44] Shoji S., “Microfabrication technologies and micro-flow devices for chemical and bio-chemical micro flow systems,” Digest of Papers. Microprocesses and Nanotechnology '99. 1999 International, 72-73, 1999.
    [45]Song H., Bringer M. R., Tice J. D. and Gerdts C. J., “Experimental test of scaling of mixing by chaotic advectionin droplets moving through microfluidic channels.” Applied Physics Letters, 83, 4664-4666, 2003.
    [46] Tang Z., Hong S., Djukic D., Modi V., West A. C., Yardley J. and Osgood R. M., “Electrokinetic flow control for composition modulation in a microchannel.” Journal of Micromechanical and Microengineering, 12, 870-877, 2002.
    [47] Tuckermann D. B. and Pease R. F. W., “High-performance heat sinks for VLSI,” IEEE Electron Device Letters, 2, 126-129, 1981.
    [48] Vilkner T., Janasek D. and Manz A., “Micro total analysis systems. recent developments,” Analytical Chemistry, 76, 3373-3386, 2004.
    [49] Voldman J., Gray M. L. and Schmidt M. A., “An integrated liquid mixer/valve.” Journal of Microelectromechanical System, 9, 295-302, 2000.
    [50] Wang B. X. and Peng X. F., “Experimental investigation on liquid forced-convection heat transfer through microchannels,” International Journal of Heat and Mass Transfer, 37, 73-82, 1994.
    [51] Woias P. “Micropumps-past, progress and future prospects,” Sensors and Actuators B: Chemical, 105, 28-38, 2005.
    [52] Wong S. H., Ward M. C. L. and Wharton C. W., “Micro T-mixer as a rapid mixing micromixer.” Sensors and Aactuators B, 100, 359-379, 2004.
    [53] Yaralioglu G. G., Wygant L. O., Marentis T. C. and Yakub B. T. K., “Ultrasonic mixing in microfluidic channels using integrated transducers.” Analytical Chemistry, 76, 3694-3698, 2004.
    [54] 黃冠瑞, “高效能微流體晶片之設計製作與其在生物醫學之應用,” 國立成功大學工程科學系, 2001。
    [55] 莊達人, “VLSI製造技術”, 高立圖書有限公司, 台灣省台北縣, 291-348, 2002年。
    [56] 林彥亨, “利用介電泳力操控細胞之生物晶片研究,” 國立成功大學工程科學系, 2002。
    [57] 張志彰, “微管道電滲流流場之壓力分佈與混合機制分析,” 國立成功大學工程科學系, 2003。
    [58] 潘郁仁, “電壓驅動式微流體細胞計數晶片之設計與製作,” 國立成功大學工程科學系, 2003。
    [59] 黃冠達, “電滲流流場分析與離子濃度分佈探討,” 國立成功大學工程科學系, 2004。

    下載圖示 校內:立即公開
    校外:2005-07-27公開
    QR CODE