| 研究生: |
陳治帆 Chen, Zhi-Fan |
|---|---|
| 論文名稱: |
懸浮微奈米粒子於大氣環境之影響分析 The impact analysis of Micro-/ nano-particles suspended in Atmospheric environment |
| 指導教授: |
黃吉川
Hwang, Chi-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | WRF-Chem 、氣溶膠 、氣旋 |
| 外文關鍵詞: | WRF-Chem, Aerosol, Cyclone |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類社會快速發展使得環境問題日益凸顯,其中台灣空氣品質及熱帶氣旋對台灣氣象環境有相當大的影響。熱帶氣旋是台灣夏季發生頻率較高的災害性天氣,對台灣各地區生活會產生重大影響。本研究利用最新發布之非靜力平衡中尺度數值預報模式WRF(Weather Research and Forecasting)及其耦合化學系統WRF-Chem3.5,並使用菲克擴散理論中分子擴散係數來計算物質分子擴散能力的物理量。故本研究藉由分析2013年10月4日菲特颱風懸浮微粒對熱帶氣旋之擴散行為的大氣過程,瞭解颱風或熱帶低壓之位置、路徑、風場等與氣溶膠粒子之相關性。分別以未耦合Chem模組的WRF、氣溶膠模組與氣相化學模組模擬,並且以巢狀網格模擬台灣周圍之懸浮微粒對熱帶氣旋的影響,分析各化學模組之模擬情形,結果表明在3公里解析度之氣溶膠模組對於台灣地區之雨量分部與雨量有不同的差異,本研究推測以氣溶膠粒子做為凝結核,水蒸氣凝結在氣溶膠粒子上形成小水滴或者冰粒子,使雨量增加許多。空氣品質方面,隨著空氣品質的影響,空氣品質問題逐漸受到關注,氣候效應由於尺度的不同,從區域尺度到全球範圍的空氣品質的氣候效應,因而研究重點有所不同。區域尺度方面空氣汙染的氣候效應著重地區地面輻射、平均氣溫和降雨的差異。本研究後段將台灣環保署空氣品質資料寫入WRF-Chem模擬中,模擬2015年4月20日至隔日汙染物分佈,使用氣相化學模式模擬了SO2、NO2、CO、O3、PM10及PM2.5等汙染物,以及使用氣溶膠模式模擬了PM10及PM2.5,發現氣溶膠模式中PM10及PM2.5的預測相較於氣相化學的PM10及PM2.5的預測準確,但所模擬出來的數值明顯偏高於測站觀測資料。
The rapid development of human society so that environmental issues become increasingly prominent, which the air quality in Taiwan and tropical cyclones have a considerable impact on Taiwan's meteorological environment. Taiwan summer tropical cyclone is a higher fre-quency of occurrence of severe weather, all areas of life in Taiwan will have a significant impact. This study use WRF(Weather Research and Forecasting)and Coupled chemical systems (WRF-Chem3.5),that is the latest release Non-hydrostatic equilibrium mesoscale numerical prediction model in this study and use Fick's laws of diffusion to calculate mo-lecular diffusion coefficient of molecular diffusion capacity of the physical substance. In this study, the rear section of Taiwan EPA air quality data written WRF-Chem Simulation. Simulation of April 20, 2015 to the distribution of pollutants every other day,using gas phase chemistry model simulations of SO2, NO2, CO, O3, PM10, PM2.5 and other pollu-tants, the use of aerosol model simulations of PM10 and PM2.5,Find PM10 and PM2.5 aerosol model of forecasting of PM10 and PM2.5 Compared to the gas phase chemistry is accurate,But the simulated value significantly higher in the station observations.
[1] C. M. Benkovitz, M. T. Scholtz, J. Pacyna, L. Tarrasón, J. Dignon, E. C. Voldner, et al., "Global gridded inventories of anthropogenic emissions of sulfur and nitrogen," Journal of Geophysical Research: Atmospheres (1984–2012), vol. 101, pp. 29239-29253, 1996.
[2] M. Z. Jacobson and D. G. Streets, "Influence of future anthropogenic emissions on climate, natural emissions, and air quality," Journal of Geophysical Research: Atmospheres (1984–2012), vol. 114, 2009.
[3] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, et al., "A description of the advanced research WRF version 2," DTIC Document2005.
[4] E. Kalnay, Atmospheric modeling, data assimilation, and predictability: Cambridge university press, 2003.
[5] C.-Y. Chen, Y.-L. Chen, and H. V. Nguyen, "The Spin-up Process of a Cyclone Vortex in a Tropical Cyclone Initialization Scheme and Its Impact on the Initial TC Structure," SOLA, vol. 10, pp. 93-97, 2014.
[6] L.-F. Hsiao, C.-S. Liou, T.-C. Yeh, Y.-R. Guo, D.-S. Chen, K.-N. Huang, et al., "A vortex relocation scheme for tropical cyclone initialization in advanced research WRF," Monthly Weather Review, vol. 138, pp. 3298-3315, 2010.
[7] B. B. Booth, N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, "Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability," Nature, vol. 484, pp. 228-232, 2012.
[8] R. D. Brook, J. R. Brook, and S. Rajagopalan, "Air pollution: the" Heart" of the problem," Current hypertension reports, vol. 5, pp. 32-39, 2003.
[9] W. C. Hinds, "Aerosol technology: properties, behavior, and measurement of airborne particles," New York, Wiley-Interscience, 1982. 442 p., vol. 1, 1982.
[10] Z. Levin and W. R. Cotton, Aerosol pollution impact on precipitation: a scientific review: Springer, 2008.
[11] V. Ramanathan, P. Crutzen, J. Kiehl, and D. Rosenfeld, "Aerosols, climate, and the hydrological cycle," science, vol. 294, pp. 2119-2124, 2001.
[12] P. Saxena, A. B. Hudischewskyj, C. Seigneur, and J. H. Seinfeld, "A comparative study of equilibrium approaches to the chemical characterization of secondary aerosols," Atmospheric Environment (1967), vol. 20, pp. 1471-1483, 1986.
[13] H. Sakugawa, I. R. Kaplan, W. Tsai, and Y. Cohen, "Atmospheric hydrogen peroxide," Environmental Science & Technology, vol. 24, pp. 1452-1462, 1990.
[14] H. Sakugawa and I. R. Kaplan, "H2O2 and O3 in the atmosphere of Los Angeles and its vicinity: factors controlling their formation and their role as oxidants of SO2," Journal of Geophysical Research: Atmospheres (1984–2012), vol. 94, pp. 12957-12973, 1989.
[15] P. Middleton, C. Kiang, and V. A. Mohnen, "Theoretical estimates of the relative importance of various urban sulfate aerosol production mechanisms," Atmospheric Environment (1967), vol. 14, pp. 463-472, 1980.
[16] G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, et al., "Selective etching of metallic carbon nanotubes by gas-phase reaction," Science, vol. 314, pp. 974-977, 2006.
[17] G. R. Carmichael and L. K. Peters, "A second generation model for regional-scale transport/chemistry/deposition," Atmospheric Environment (1967), vol. 20, pp. 173-188, 1986.
[18] J. R. Odum, T. Hoffmann, F. Bowman, D. Collins, R. C. Flagan, and J. H. Seinfeld, "Gas/particle partitioning and secondary organic aerosol yields," Environmental Science & Technology, vol. 30, pp. 2580-2585, 1996.
[19] P. Stier, J. Feichter, S. Kinne, S. Kloster, E. Vignati, J. Wilson, et al., "The aerosol-climate model ECHAM5-HAM," Atmospheric Chemistry and Physics, vol. 5, pp. 1125-1156, 2005.
[20] M. Wang, S. Ghan, M. Ovchinnikov, X. Liu, R. Easter, E. Kassianov, et al., "Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF," Atmospheric Chemistry and Physics, vol. 11, pp. 5431-5455, 2011.
[21] D. T. Shindell, D. Rind, and P. Lonergan, "Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations," Nature, vol. 392, pp. 589-592, 1998.
[22] R. Forkel, J. Werhahn, A. B. Hansen, S. McKeen, S. Peckham, G. Grell, et al., "Effect of aerosol-radiation feedback on regional air quality–a case study with WRF/Chem," Atmospheric environment, vol. 53, pp. 202-211, 2012.
[23] J. E. Penner, R. E. Dickinson, and C. A. O'Neill, "Effects of aerosol from biomass burning on the global radiation budget," Science, vol. 256, pp. 1432-1434, 1992.
[24] R. J. Charlson, S. Schwartz, J. Hales, R. D. Cess, j. J. COAKLEY, J. Hansen, et al., "Climate forcing by anthropogenic aerosols," Science, vol. 255, pp. 423-430, 1992.
[25] D. A. Hegg, "Cloud condensation nucleus‐sulphate mass relationship and cloud albedo," Journal of Geophysical Research: Atmospheres (1984–2012), vol. 99, pp. 25903-25907, 1994.
[26] Y. Zhang, "Online-coupled meteorology and chemistry models: history, current status, and outlook," Atmospheric Chemistry and Physics, vol. 8, pp. 2895-2932, 2008.
[27] T. Novakov and J. Penner, "Large contribution of organic aerosols to cloud-condensation-nuclei concentrations," Nature, vol. 365, pp. 823-826, 1993.
[28] J. G. Hudson, "Cloud condensation nuclei," Journal of Applied Meteorology, vol. 32, pp. 596-607, 1993.
[29] J. Sun and P. A. Ariya, "Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review," Atmospheric Environment, vol. 40, pp. 795-820, 2006.
[30] I. Uno, G. Carmichael, D. Streets, Y. Tang, J. Yienger, S. Satake, et al., "Regional chemical weather forecasting system CFORS: Model descriptions and analysis of surface observations at Japanese island stations during the ACE‐Asia experiment," Journal of Geophysical Research: Atmospheres (1984–2012), vol. 108, 2003.
[31] I. Uno, S. Satake, G. R. Carmichael, Y. Tang, Z. Wang, T. Takemura, et al., "Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model," Journal of Geophysical Research: Atmospheres (1984–2012), vol. 109, 2004.
[32] F. S. Binkowski and S. J. Roselle, "Models‐3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description," Journal of Geophysical Research: Atmospheres (1984–2012), vol. 108, 2003.
[33] K. W. Appel, P. V. Bhave, A. B. Gilliland, G. Sarwar, and S. J. Roselle, "Evaluation of the community multiscale air quality (CMAQ) model version 4.5: Sensitivities impacting model performance; Part II–particulate matter," Atmos. Environ, vol. 42, pp. 6057-6066, 2008.
[34] J. D. Doyle, "Coupled ocean wave/atmosphere mesoscale model simulations of cyclogenesis," Tellus A, vol. 47, pp. 766-778, 1995.
[35] K. M. Mok and K. I. Hoi, "Effects of meteorological conditions on PM10 concentrations-A study in Macau," Environmental monitoring and assessment, vol. 102, pp. 201-223, 2005.
[36] D. Rosenfeld, A. Khain, B. Lynn, and W. Woodley, "Simulation of hurricane response to suppression of warm rain by sub-micron aerosols," Atmospheric Chemistry and Physics, vol. 7, pp. 3411-3424, 2007.
[37] H. Zhang, G. M. McFarquhar, S. M. Saleeby, and W. R. Cotton, "Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone," Geophysical Research Letters, vol. 34, 2007.
[38] T. R. Knutson, J. L. McBride, J. Chan, K. Emanuel, G. Holland, C. Landsea, et al., "Tropical cyclones and climate change," Nature Geoscience, vol. 3, pp. 157-163, 2010.
[39] S. Gong, D. Lavoué, T. Zhao, P. Huang, and J. Kaminski, "GEM-AQ/EC, an on-line global multi-scale chemical weather modelling system: model development and evaluation of global aerosol climatology," Atmospheric Chemistry and Physics, vol. 12, pp. 8237-8256, 2012.
[40] M. Xie, T. Wang, L. Gao, and K. Lam, "Study on the characteristics of a photochemical pollution episode in Hong Kong," Journal of Tropical Meteorology, vol. 20, pp. 433-442, 2004.
[41] T. Wang, K. Lam, M. Xie, X. Wang, G. Carmichael, and Y. Li, "Integrated studies of a photochemical smog episode in Hong Kong and regional transport in the Pearl River Delta of China," Tellus B, vol. 58, pp. 31-40, 2006.
[42] F. Jiang, T. Wang, T. Wang, M. Xie, and H. Zhao, "Numerical modeling of a continuous photochemical pollution episode in Hong Kong using WRF–chem," Atmospheric Environment, vol. 42, pp. 8717-8727, 2008.
[43] S.-Y. Hong and J.-O. J. Lim, "The WRF single-moment 6-class microphysics scheme (WSM6)," J. Korean Meteor. Soc, vol. 42, pp. 129-151, 2006.
[44] M. Tiedtke, "A comprehensive mass flux scheme for cumulus parameterization in large-scale models," Monthly Weather Review, vol. 117, pp. 1779-1800, 1989.
[45] L. J. Donner, "A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects," Journal of the atmospheric sciences, vol. 50, pp. 889-906, 1993.
[46] X.-M. Hu, J. W. Nielsen-Gammon, and F. Zhang, "Evaluation of three planetary boundary layer schemes in the WRF model," Journal of Applied Meteorology and Climatology, vol. 49, pp. 1831-1844, 2010.
[47] J. Noilhan and S. Planton, "A simple parameterization of land surface processes for meteorological models," Monthly Weather Review, vol. 117, pp. 536-549, 1989.
[48] S. Clough, M. Shephard, E. Mlawer, J. Delamere, M. Iacono, K. Cady-Pereira, et al., "Atmospheric radiative transfer modeling: a summary of the AER codes," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 91, pp. 233-244, 2005.
[49] M. Wesely, "Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models," Atmospheric Environment (1967), vol. 23, pp. 1293-1304, 1989.
[50] J. W. Erisman, A. Van Pul, and P. Wyers, "Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone," Atmospheric Environment, vol. 28, pp. 2595-2607, 1994.
[51] P. Middleton, W. R. Stockwell, and W. P. Carter, "Aggregation and analysis of volatile organic compound emissions for regional modeling," Atmospheric Environment. Part A. General Topics, vol. 24, pp. 1107-1133, 1990.
[52] W. R. Stockwell, P. Middleton, J. S. Chang, and X. Tang, "The second generation regional acid deposition model chemical mechanism for regional air quality modeling," Journal of Geophysical Research: Atmospheres (1984–2012), vol. 95, pp. 16343-16367, 1990.
[53] W. R. Stockwell, F. Kirchner, M. Kuhn, and S. Seefeld, "A new mechanism for regional atmospheric chemistry modeling," Journal of Geophysical Research: Atmospheres (1984–2012), vol. 102, pp. 25847-25879, 1997.
[54] S. Madronich, "Photodissociation in the atmosphere," J. geophys. Res, vol. 92, pp. 9740-9752, 1987.
[55] B. BRIEGLEB, "Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model," Journal of Geophysical Research, vol. 97, pp. 7603-7612, 1992.
[56] R. D. Cess, G. Potter, J. Blanchet, G. Boer, S. Ghan, J. Kiehl, et al., "Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models," Science, vol. 245, pp. 513-516, 1989.
[57] A. Jones, D. Roberts, and A. Slingo, "A climate model study of indirect radiative forcing," Nature, vol. 370, pp. 450-453, 1994.
[58] B. Schell, I. J. Ackermann, H. Hass, F. S. Binkowski, and A. Ebel, "Modeling the formation of secondary organic aerosol within a comprehensive air quality model system," Journal of Geophysical Research: Atmospheres (1984–2012), vol. 106, pp. 28275-28293, 2001.
[59] M. Kulmala, A. Laaksonen, and L. Pirjola, "Parameterizations for sulfuric acid/water nucleation rates," Journal of Geophysical Research: Atmospheres (1984–2012), vol. 103, pp. 8301-8307, 1998.
[60] F. S. Binkowski and U. Shankar, "The regional particulate matter model 1. Model description and preliminary results," JOURNAL OF GEOPHYSICAL RESEARCH-ALL SERIES-, vol. 100, pp. 26,191-26,209, 1995.
[61] H. Bunz and R. Dlugi, "Numerical studies on the behaviour of aerosols in smog chambers," Journal of aerosol science, vol. 22, pp. 441-465, 1991.
[62] J. Olivier, A. Bouwman, C. Van der Maas, and J. Berdowski, "Emission database for global atmospheric research (EDGAR)," in Non-CO2 Greenhouse Gases: Why and How to Control?, ed: Springer, 1994, pp. 93-106.
[63] M. Schultz, L. Backman, Y. Balkanski, S. Bjoerndalsaeter, R. Brand, J. Burrows, et al., "REanalysis of the TROpospheric chemical composition over the past 40 years (RETRO)–A long-term global modeling study of tropospheric chemistry," Final Report, Jülich/Hamburg, Germany, vol. 2007, 2007.
[64] B. N. Duncan, R. V. Martin, A. C. Staudt, R. Yevich, and J. A. Logan, "Interannual and seasonal variability of biomass burning emissions constrained by satellite observations," Journal of Geophysical Research: Atmospheres (1984–2012), vol. 108, pp. ACH 1-1-ACH 1-22, 2003.
校內:2025-12-31公開