| 研究生: |
洪輝國 Hung, Huei-Guo |
|---|---|
| 論文名稱: |
應用複合式轉軸於轉子軸承系統之動態特性研究 Dynamic Analysis of a Rotor-Bearing System with Hybrid Shaft |
| 指導教授: |
崔兆棠
Choi, Siu-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 有限元素法 、轉子軸承系統 、複合式轉軸 |
| 外文關鍵詞: | Finite Element Method, Rotor-Bearing system, Hybrid Shaft |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以有限元素法分析含複合式轉軸之轉子軸承系統的動態特性。複合式轉軸為一實心金屬軸在內與包覆在外之複合材料組合而成,系統轉軸模擬為Timoshenko Beam。本研究系統之轉盤為剛體,軸承以線性彈簧及阻尼器模擬。本文採用ANSYS軟體進行模型建立與數值模擬分析。本研究將探討應用金屬與複合式轉軸之轉子軸承系統動態特性。 研究結果顯示,隨著複合材料層之纖維與平行轉軸方向夾角減小,系統側向自然頻率會顯著提升,而複合材料層之纖維與平行轉軸方向夾角越接近 度則扭轉自然頻率會大幅提升。
In the thesis, dynamic characteristics of rotor-bearing system with hybrid shaft is analyzed by using finite element software ANSYS. The shaft of the system is modeled as Timoshenko beam. Disks are considered to be rigid and gyroscopic effect taken into account. Bearings are considered to be linear and modeled as spring damper set. The hybrid shaft is combined by metal shaft inside and bounded with composite layer outside. The metal shaft was built by aluminum, the composite layer was built by graphite/epoxy. The contact face between metal shaft and composite layer is considered to be perfectly bonded. The analysis of the vibratory characteristics of a rotor bearing system with hybrid shaft subject to orientation of fibers and the numbers of disks, is presented in the paper. The bending nature frequency and critical speed can be raised up to almost 50% for the rotor bearing system with hybrid shaft. The torsional nature frequency can be raised up to almost 45%. The hybrid shaft can provide enough bending and torsional stiffness with right stack of composite reinforcement.
[1] Ruhl, R. L., and Booker, J. F., “A Finite Element Model For Distributed Parameter Turborotor System,” ASME Journal of Engineering for Industry, Vol. 94, pp. 126-132, 1972.
[2] Nelson, H. D., and McVaugh, J. M., “The Dynamics of Rotor-Bearing Systems Using Finite Elements,” ASME Journal of Engineering for Industry, Vol. 98, pp. 593-600, 1976.
[3] Nelson, H. D., “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” ASME Journal of Mechanical Design, Vol. 102, pp. 793-803, 1980.
[4] Dym, C. L., and Shames, I. H., Solid Mechanics–A Variational Approach, McGraw-Hill, New York, 1973.
[5] Eshleman, R. L., and Eubanks, R. A., “On the Critical Speeds of a Continuous Rotor,” ASME, Journal of Engineering for Industry, Vol. 91, pp. 1180-1188, 1969.
[6] Hassenpflug, H. L., Flack, R. D., and Gunter E. J., “Influence of Acceleration on the Critical Speed of a Jeffcott Rotor,” ASME Journal of Engineering for Power, Vol. 103, pp. 108-113, 1981.
[7] Greenhill, L. M., Bickford, W. B., and Nelson, H. D., “A Conical Beam Finite Element for Rotor Dynamic Analysis,” ASME Journal of Vibration, Acoustics, Stress, Reliability in Design, Vol. 107, pp. 421-430, 1985.
[8] Adams, M. L., “Nonlinear Dynamics of Flexible Multi-Bearing Rotors,” Journal of Sound and Vibration, Vol. 71, pp. 129-144, 1980.
[9] Lee, A. C., and Kang Y., “Transient Analysis of an Asymmetric Rotor-Bearing System during Acceleration,” ASME Journal of Engineering for Industry, Vol. 114, pp. 465-475, 1992.
[10] Ozgüven, N. H., and Ozkan, L. Z., “Whirl Speeds and Unbalance Response of Multi-bearing Rotors Using Finite Elements,” ASME Journal of Vibration and Acoustics, Vol. 106, pp. 72-79, 1984.
[11] Kim, W. Argento, A. and Scott, R. A., “Free Vibration of A Rotating Tapered Composite Timoshenko Shaft,” Journal of Sound and Vibration Vol. 226(1), pp. 125-147,1999.
[12] Gubran, H. B. H. “Dynamics of Hybrid Shafts,” Mechanics Research Communications, Vol. 32, pp. 368–374, 2005.
[13] Guo, D. Chu, F.L. and Zheng, Z.C., “The Influence of Rotation on Vibration of a Thick Cylindrical Shell,” Journal of Sound and Vibration, Vol. 2423. pp. 487-505, 2001.
[14] ANSYS Composite PrepPost Theory Reference, ANSYS Help, 2009.
[15] Press, W. H. , Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, 1993.
[16] Wilkinson, J. H. and Reinsch, C., Linear Algebra Handbook for Automatic Computation, Vol. II, 418-439, Springer-Verlag, New York, NY. 1971.
[17] Lalanne, M. and Ferraris, G., Rotordynamics Prediction in Engineering, John Wiley and Sons, pp. 16-28, 1990.
[18] 阮競揚, 含橫向裂縫的轉子軸承系統之動態特性分析, 國立成功大學航太工程研究所碩士論文, 1997.
[19] Rotordynamic Analysis Guide, ANSYS Help, 2009.
[20] Eigenvalue and Eigenvector Extraction, ANSYS Mechanical APDL Theory Reference, 2009.
[21] Dimarogonas, A. D. and Sam, H. , Vibration for Engineers, Prentice Hall Revised edition, 1992.
[22] Mancilla, J. G., Nosov, V. and Navarro, G. S., “Rotor-Bearing System Stability Performance Comparing Hybrid versus Conventional Bearings, International Journal of Rotating Machinery, Vol. 2005 pp. 16–22, 2005.