簡易檢索 / 詳目顯示

研究生: 曾武龍
Tseng, Wu-Lung
論文名稱: 迷走神經刺激藉由神經免疫調節作用改善動物模式胃輕癱
Vagus nerve stimulation improves gastroparesis in the animal model of intestinal manipulation via neuroimmunomodulation
指導教授: 吳怡眞
Wu, Yi-Jen
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 85
中文關鍵詞: 胃輕癱迷走神經電刺激神經性免疫調節
外文關鍵詞: vagus nerve stimulation (VNS), neuroimmunomodulation, gastroparesis
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 i Extended Abstract iii 致謝 vi 第一章 緒論 (Introduction) 1 1-1. 胃輕癱 1 1-2. 迷走神經 2 1-3. 迷走神經、腸胃道蠕動功能障礙與發炎之關係 3 1-4. 室旁核與腸胃功能的關聯 4 1-5. 迷走神經電刺激 4 1-6. VNS與神經免疫調節 5 1-7. VNS在腸胃疾病的運用 6 1-8. 研究假說與實驗目的 7 具體目標: 8 第二章 材料與方法 (Material and Methods) 9 2-1. 實驗設計流程 9 2-2. 腸道操作誘導的胃輕癱大鼠模型與胃排空測量 9 2-3. 迷走神經電刺激手術 13 2-4. 血清ELISA檢測 18 2-5. 免疫組織化學染色 19 2-6. 免疫螢光染色 20 2-7. 統計方法 21 第三章 實驗結果 (Results) 22 3-1. IM誘導之胃輕癱大鼠與LP控制組比較胃排空率與腸胃幾何中心下降 22 3-2. VNS處理比較sham刺激的IM誘導之胃輕癱大鼠的胃排空與腸胃幾何中心上升 23 3-3. 腸道操作誘導的胃輕癱大鼠血清中TNF-α與IL-6 24 3-4. VNS改善腸道操作誘導的胃輕癱大鼠血清中TNF-α與IL-6 24 3-5. VNS對腸道操作誘導的胃輕癱大鼠腸胃組織中的髓過氧化物酶(MPO) 25 3-6. 迷走神經電刺激對腦部核區的活化 27 第四章 討論 (Discussion) 31 4-1. 迷走神經對腸胃功能的影響 31 4-2. 迷走神經電刺激對腸胃功能的影響 32 4-3. 迷走神經電刺激對發炎症狀的影響 32 4-4. 迷走神經電刺激影響腦部相關核區的活化 33 4-5. 研究上之限制與未來方向 34 第五章 結論 (Conclusion) 38 圖與圖說 40 參考文獻 (Reference) 72

    [1] Lee KN. Gastroparesis in Asia: An Area Still Unfamiliar to Asian Gastroenterologists. J Neurogastroenterol Motil 2021;27(1):5-7.
    [2] Nguyen LA, Snape WJ, Jr. Clinical presentation and pathophysiology of gastroparesis. Gastroenterol Clin North Am 2015;44(1):21-30.
    [3] Reddivari AKR, Mehta P. Gastroparesis. StatPearls, Treasure Island (FL): StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.; 2023.
    [4] Sturm A, Holtmann G, Goebell H, Gerken G. Prokinetics in patients with gastroparesis: a systematic analysis. Digestion 1999;60(5):422-7.
    [5] McCurdy GA, Gooden T, Weis F, Mubashir M, Rashid S, Raza SM, et al. Gastric peroral endoscopic pyloromyotomy (G-POEM) in patients with refractory gastroparesis: a review. Therap Adv Gastroenterol 2023;16:17562848231151289.
    [6] Hashimoto K, Tashima K, Imai T, Matsumoto K, Horie S. The rodent model of impaired gastric motility induced by allyl isothiocyanate, a pungent ingredient of wasabi, to evaluate therapeutic agents for functional dyspepsia. J Pharmacol Sci 2021;145(1):122-9.
    [7] de Jonge WJ, van den Wijngaard RM, The FO, ter Beek ML, Bennink RJ, Tytgat GN, et al. Postoperative ileus is maintained by intestinal immune infiltrates that activate inhibitory neural pathways in mice. Gastroenterology 2003;125(4):1137-47.
    [8] Fang YT, Lin YT, Tseng WL, Tseng P, Hua GL, Chao YJ, et al. Neuroimmunomodulation of vagus nerve stimulation and the therapeutic implications. Front Aging Neurosci 2023;15:1173987.
    [9] Berthoud HR, Neuhuber WL. Vagal mechanisms as neuromodulatory targets for the treatment of metabolic disease. Ann N Y Acad Sci 2019;1454(1):42-55.
    [10] Holmes GM. Upper gastrointestinal dysmotility after spinal cord injury: is diminished vagal sensory processing one culprit? Front Physiol 2012;3:277.
    [11] Gottfried-Blackmore A, Namkoong H, Adler E, Martin B, Gubatan J, Fernandez-Becker N, et al. Gastric Mucosal Immune Profiling and Dysregulation in Idiopathic Gastroparesis. Clin Transl Gastroenterol 2021;12(5):e00349.
    [12] Zhang J, Liu S, Tang M, Chen JD. Optimal locations and parameters of gastric electrical stimulation in altering ghrelin and oxytocin in the hypothalamus of rats. Neurosci Res 2008;62(4):262-9.
    [13] Guo FF, Xu L, Gao SL, Sun XR, Li ZL, Gong YL. The effects of nesfatin-1 in the paraventricular nucleus on gastric motility and its potential regulation by the lateral hypothalamic area in rats. J Neurochem 2015;132(3):266-75.
    [14] Penry JK, Dean JC. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia 1990;31 Suppl 2:S40-3.
    [15] Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C, et al. Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry 2000;47(4):276-86.
    [16] Kelly MJ, Breathnach C, Tracey KJ, Donnelly SC. Manipulation of the inflammatory reflex as a therapeutic strategy. Cell Rep Med 2022;3(7):100696.
    [17] Mayer EA, Savidge T, Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 2014;146(6):1500-12.
    [18] Martelli D, McKinley MJ, McAllen RM. The cholinergic anti-inflammatory pathway: a critical review. Auton Neurosci 2014;182:65-9.
    [19] Tasaka Y, Yasunaga D, Kiyoi T, Tanaka M, Tanaka A, Suemaru K, et al. Involvement of stimulation of α7 nicotinic acetylcholine receptors in the suppressive effect of tropisetron on dextran sulfate sodium-induced colitis in mice. J Pharmacol Sci 2015;127(3):275-83.
    [20] Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 2006;131(4):1122-30.
    [21] Kwan H, Garzoni L, Liu HL, Cao M, Desrochers A, Fecteau G, et al. Vagus Nerve Stimulation for Treatment of Inflammation: Systematic Review of Animal Models and Clinical Studies. Bioelectron Med 2016;3:1-6.
    [22] Young CF, Moussa M, Shubrook JH. Diabetic Gastroparesis: A Review. Diabetes Spectr 2020;33(3):290-7.
    [23] Dong K, Yu XJ, Li B, Wen EG, Xiong W, Guan QL. Advances in mechanisms of postsurgical gastroparesis syndrome and its diagnosis and treatment. Chin J Dig Dis 2006;7(2):76-82.
    [24] Aalbers M, Vles J, Klinkenberg S, Hoogland G, Majoie M, Rijkers K. Animal models for vagus nerve stimulation in epilepsy. Exp Neurol 2011;230(2):167-75.
    [25] Austelle CW, O'Leary GH, Thompson S, Gruber E, Kahn A, Manett AJ, et al. A Comprehensive Review of Vagus Nerve Stimulation for Depression. Neuromodulation 2022;25(3):309-15.
    [26] Grandi A, Zini I, Flammini L, Cantoni AM, Vivo V, Ballabeni V, et al. α(7) Nicotinic Agonist AR-R17779 Protects Mice against 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in a Spleen-Dependent Way. Front Pharmacol 2017;8:809.
    [27] Hashimoto K, Tashima K, Imai T, Matsumoto K, Horie S. The rodent model of impaired gastric motility induced by allyl isothiocyanate, a pungent ingredient of wasabi, to evaluate therapeutic agents for functional dyspepsia. J Pharmacol Sci. 2021;145(1):122-129.
    [28] Nikiforou M, Willburger C, de Jong AE, Kloosterboer N, Jellema RK, Ophelders DRMG, Steinbusch HWM, Kramer BW, Wolfs T. Global hypoxia-ischemia induced inflammation and structural changes in the preterm ovine gut which were not ameliorated by mesenchymal stem cell treatment. Mol Med. 2016; 22:244-257.

    無法下載圖示 校內:2029-01-31公開
    校外:2029-01-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE