簡易檢索 / 詳目顯示

研究生: 施文琮
Shih, Wu-Tsung
論文名稱: 單晶銳鈦礦奈米棒之光電極形態對染料敏化太陽能電池性能之影響
Effect of photoelectrode morphology of single-crystalline anatase nanorods on the performance of dye-sensitized solar cells
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 61
中文關鍵詞: 銳鈦礦二氧化鈦單晶奈米棒染料敏化太陽能電池熱穩定性分散性
外文關鍵詞: TiO2, nanorods, dye-sensitized solar cell, single-crystal, anatase, dispersity, thermal stability
相關次數: 點閱:65下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用兩階段水熱反應合成出二氧化鈦,經由TEM、XRD、Raman、HR-TEM及BET鑑定下,可發現合成出的二氧化鈦為單晶的anatase奈米棒且具有相當的表面積。利用修改後的凝膠-溶膠法可製備更長的二氧化鈦奈米棒。二氧化鈦奈米棒具高分散性及無大的聚集體,所以可製造結構緊密且無裂痕的二氧化鈦薄膜。
    以terpineol為基底的二氧化鈦奈米棒與P25漿料製成的電極,在染料敏化太陽能電池上可獲得相同的光電轉化效能(4.57 %)。由於奈米棒薄膜具有較佳的導電性及透明度,但也因此缺乏散射性,所以為了提高效能,添加適量的散射粒子(P25)與奈米棒混,其重量比分別為:25 wt% (P1/R3)、50 wt% (P1/R1)與75 wt% (P3/R1),可在P1/R3和P1/R1獲得更高轉化效能5.18 %和5.08 %。同時我們觀察到二氧化鈦奈米棒薄膜有良好熱穩定性,在經過550C燒結後依然保有其形態與單晶性。最後,改善電池組裝製程可提高P25的效率從4.57 %到4.88 %,二氧化鈦奈米棒甚至可達5.67 %。

    The single-crystalline anatase TiO2 nanorods (NRs) have been synthesized by two steps in hydrothermal reaction and characterized by TEM, HR-TEM and BET. TiO2 NRs are also identified by Raman and XRD, presented only existence of anatase phase. Long TiO2 NRs (LNRs) also can be prepared by a modified gel-sol process. Monodispersed TiO2 NR particles exhibit high dispersity without large agglomerates, which result in a compact and crack-free TiO2 thin film.
    The light-to-electricity of terpineol-based TiO2 pastes with TiO2 NRs and P25 electrodes in dye-sensitized solar cell is obtained the same conversion efficiency 4.57 %. Owing to TiO2 NRs have better conductivity, transparency but lack of scattering property; three different P25/NRs composites are prepared with 25 wt% (P1/R3), 50 wt% (P1/R1), and 75 wt% (P3/R1) NRs, respectively. Higher conversion efficiency of 5.18 % and 5.08 % are achieved by P1/R3 and P1/R1, respectively, due to cooperation of suitable combination of NRs and scattering particulate P25. We also observed that the TiO2 NR film have good thermal stability because of maintaining its morphology and single-crystalline phase even though after sintering at 550 ℃. Finally, an enhancement of efficiency from 4.57 % to 4.88 % and even 5.67 % for P25 and TiO2 NRs, respectively, results from an improved cell assembly procedure.

    摘要......................................................I Abstract.................................................II 誌謝....................................................III Table of Contents........................................IV List of Tables..........................................VII List of Figures........................................VIII Chapter 1. Introduction...................................1 Chapter 2. Literature Review..............................7 2.1 Semiconductor Solar Cells...........................7 2.2 Dye-Sensitized Solar Cells..........................8 2.2.1 Working Principle of DSSC......................10 2.2.2 Structure and Materials of DSSC................12 2.2.2.1 Transparent Conduction Oxide Substrate.....12 2.2.2.2 Semiconductor Electrode....................12 2.2.2.3 Ru Complex Photosensitizer.................13 2.2.2.4 Redox Electrolyte..........................15 2.2.2.5 Counter Electrode..........................16 2.3 Titanium Dioxide...................................17 2.4 The Paste for Screen Printing......................20 Chapter 3. Experimental Section..........................21 3.1 Materials..........................................21 3.2 Produce of TiO2 Nanorod and Paste..................22 3.2.1 Preparation of TiO2 Nanorod....................22 3.2.2 Preparation of TiO2 Paste......................22 3.3 Fabrication of Dye-Sensitized Solar Cells..........23 3.3.1 Preparation of TiO2 Electrode..................23 3.3.2 Dye Adsorption of TiO2 Film....................23 3.3.3 Preparation of Electrolyte.....................24 3.3.4 Preparation of Counter Electrode...............24 3.3.5 Assembling Dye-Sensitized Solar Cells..........24 3.4 Characterization and Measurements..................25 3.4.1 Electron Microscopy............................25 3.4.2 Dynamic Light Scattering.......................26 3.4.3 X-ray Diffraction..............................26 3.4.4 Raman Spectroscopy.............................27 3.4.5 UV-visible Spectroscopy........................27 3.4.6 N2 Adsorption/Desorption Isotherm..............27 3.4.7 Photovoltaic Performance.......................28 Chapter 4. Results and Discussion........................30 4.1 Titania NRs and Paste..............................30 4.2 Photoelectrodes Based on P25/NRs Composites........36 4.3 DSSCs Based on P25/NRs Composites..................39 4.4 Thermal Stability of Anatase NR Films..............47 4.5 An Improved Cell Assembly Process..................50 Chapter 5. Conclusions...................................53 References...............................................54

    [1]H. Scheer P. Sonnenstrategie, Alternative, "Worldwatch Institute report, state of the world; annual reports," W. W. Norton & Company, New York (1993).
    [2]U.S. Census Bureau, "Statistical Abstract of the United States 2007," Washington, DC: U.S. Census Bureau (2007).
    [3]D. Pimentel (ed.), "Biofuels, Solar and Wind as Renewable Energy Systems," Springer Science, B.V. (2008).
    [4]www.eren.doe.gov/ erec/factsheets / eewindows.html, "Consumer energy information: EREC fact sheets. Retrieved October 20, 2002," U.S. Department of Energy (2000).
    [5]"Energy efficiency and renewable energy network. Retrieved October 20, 2002," www.eren.doe.gov/stateenergy/tech solar.cfm?state=NY U.S. Department of Energy (2001).
    [6]M. A. Green, "Third generation photovoltaics: Ultra-high conversion efficiency at low cost," Progress in Photovoltaics 9 (2), 123-135 (2001).
    [7]P. Maycock, "Renewable Energy World," 86 (2005).
    [8]K. W. J. Barnham, M. Mazzer, and B. Clive, "Resolving the energy crisis: nuclear or photovoltaics?," Nature Materials 5 (3), 161-164 (2006).
    [9]B. O'Regan and M. Grtzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature 353 (6346), 737-740 (1991).
    [10]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grtzel, "Conversion of light to electricity by cis-X2bis (2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes," Journal of the American Chemical Society 115 (14), 6382-6390 (1993).
    [11]S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, and M. Grtzel, "Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells," Progress in Photovoltaics 15 (7), 603-612 (2007).
    [12]P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, and M. Grtzel, "Enhance the performance of dye-sensitized solar cells by Co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals," Journal of Physical Chemistry B 107 (51), 14336-14341 (2003).
    [13]S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grtzel, "Photovoltaic characterization of dye-sensitized solar cells: Effect of device masking on conversion efficiency," Progress in Photovoltaics 14 (7), 589-601 (2006).
    [14]A. J. Frank, N. Kopidakis, and J. van de Lagemaat, "Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties," Coordination Chemistry Reviews 248 (13-14), 1165-1179 (2004).
    [15]L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, and F. Levy, "High mobility n-type charge carriers in large single crystals of anatase (TiO2)," Journal of Applied Physics 75 (1), 633-635 (1994).
    [16]S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, "Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells," Journal of Physical Chemistry B 106 (39), 10004-10010 (2002).
    [17]A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, "Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells," Journal of Physical Chemistry B 104 (5), 949-958 (2000).
    [18]T. Oekermann, D. Zhang, T. Yoshida, and H. Minoura, "Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization," Journal of Physical Chemistry B 108 (7), 2227-2235 (2004).
    [19]A. Goetzberger, C. Hebling, and H. W. Schock, "Photovoltaic materials, history, status and outlook," Materials Science & Engineering R-Reports 40 (1), 1-46 (2003).
    [20]L. Manna, E. C. Scher, and A. P. Alivisatos, "Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals," Journal of the American Chemical Society 122 (51), 12700-12706 (2000).
    [21]M. Nirmal and L. Brus, "Luminescence photophysics in semiconductor nanocrystals," Accounts of Chemical Research 32 (5), 407-414 (1999).
    [22]S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, "Photoluminescence from single semiconductor nanostructures," Advanced Materials 11 (15), 1243-1256 (1999).
    [23]G. Schlichthorl, S. Y. Huang, J. Sprague, and A. J. Frank, "Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy," Journal of Physical Chemistry B 101 (41), 8141-8155 (1997).
    [24]L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, and I. Uhlendorf, "Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy," Journal of Physical Chemistry B 101 (49), 10281-10289 (1997).
    [25]M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grtzel, "Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell," Journal of Physical Chemistry B 107 (34), 8981-8987 (2003).
    [26]M. Grtzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4 (2), 145-153 (2003).
    [27]A. F. Nogueira, C. Longo, and M. A. De Paoli, "Polymers in dye sensitized solar cells: overview and perspectives," Coordination Chemistry Reviews 248 (13-14), 1455-1468 (2004).
    [28]C. Longo and M. A. De Paoli, "Dye-sensitized solar cells: A successful combination of materials," Journal of the Brazilian Chemical Society 14 (6), 889-901 (2003).
    [29]R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. N. Castellano, and G. J. Meyer, "Enhanced Spectral Sensitivity from Ruthenium(II) Polypyridyl Based Photovoltaic Devices," Inorganic Chemistry 33 (25), 5741-5749 (1994).
    [30]K. S. Finnie, J. R. Bartlett, and J. L. Woolfrey, "Vibrational spectroscopic study of the coordination of (2,2 '-bipyridyl-4,4 '-dicarboxylic acid)ruthenium(II) complexes to the surface of nanocrystalline titania," Langmuir 14 (10), 2744-2749 (1998).
    [31]M. K. Nazeeruddin, M. Amirnasr, P. Comte, J. R. Mackay, A. J. McQuillan, R. Houriet, and M. Grtzel, "Adsorption studies of counterions carried by the sensitizer cis-dithiocyanato(2,2 '-bipyridyl-4,4 '-dicarboxylate) ruthenium(II) on nanocrystaline TiO2 films," Langmuir 16 (22), 8525-8528 (2000).
    [32]K. Murakoshi, G. Kano, Y. Wada, S. Yanagida, H. Miyazaki, M. Matsumoto, and S. Murasawa, "Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell," Journal of Electroanalytical Chemistry 396 (1-2), 27-34 (1995).
    [33]K. Sayama, H. Sugihara, and H. Arakawa, "Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye," Chemistry of Materials 10 (12), 3825-3832 (1998).
    [34]A. Luque S. Hegedus, "Handbook of photovoltaic science and engineering," Wiley, 669 (2003).
    [35]K. Kalyanasundaram and M. Grtzel, "Applications of functionalized transition metal complexes in photonic and optoelectronic devices," Coordination Chemistry Reviews 177, 347-414 (1998).
    [36]G. Oskam, B. V. Bergeron, G. J. Meyer, and P. C. Searson, "Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells," Journal of Physical Chemistry B 105 (29), 6867-6873 (2001).
    [37]Z. Kebede and S. E. Lindquist, "The obstructed diffusion of the I3- ion in mesoscopic TiO2 membranes," Solar Energy Materials and Solar Cells 51 (3-4), 291-303 (1998).
    [38]Y. Liu, A. Hagfeldt, X. R. Xiao, and S. E. Lindquist, "Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell," Solar Energy Materials and Solar Cells 55 (3), 267-281 (1998).
    [39]D. Kuciauskas, M. S. Freund, H. B. Gray, J. R. Winkler, and N. S. Lewis, "Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes," Journal of Physical Chemistry B 105 (2), 392-403 (2001).
    [40]N. Papageorgiou, W. F. Maier, and M. Grtzel, "An iodine/triiodide reduction electrocatalyst for aqueous and organic media," Journal of the Electrochemical Society 144 (3), 876-884 (1997).
    [41]H. Wang, C. T. Yip, K. Y. Cheung, A. B. Djurisic, M. H. Xie, Y. H. Leung, and W. K. Chan, "Titania-nanotube-array-based photovoltaic cells," Applied Physics Letters 89 (2), 3 (2006).
    [42]S. J. Roh, R. S. Mane, S. K. Min, W. J. Lee, C. D. Lokhande, and S. H. Han, "Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells," Applied Physics Letters 89 (25), 3 (2006).
    [43]Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, "Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell," Coordination Chemistry Reviews 248 (13-14), 1381-1389 (2004).
    [44]S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki, and S. Yoshikawa, "Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure," Journal of Photochemistry and Photobiology A: Chemistry 164 (145), 145-151 (2004).
    [45]J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, "TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells," Journal of Photochemistry and Photobiology a-Chemistry 180 (1-2), 184-188 (2006).
    [46]Y. Chiba, A. Islam, R. Komiya, N. Koide, and L. Y. Han, "Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze," Applied Physics Letters 88 (22), 3 (2006).
    [47]B. Tan and Y. Y. Wu, "Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites," Journal of Physical Chemistry B 110 (32), 15932-15938 (2006).
    [48]I. C. Flores, J. N. de Freitas, C. Longo, M. A. De Paoli, H. Winnischofer, and A. F. Nogueira, "Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte," Journal of Photochemistry and Photobiology A: Chemistry 189 (2-3), 153-160 (2007).
    [49]C. J. Lin, W. Y. Yu, and S. H. Chien, "Effect of anodic TiO2 powder as additive on electron transport properties in nanocrystalline TiO2 dye-sensitized solar cells," Applied Physics Letters 91 (23), 3 (2007).
    [50]J. J. Wu, G. R. Chen, C. C. Lu, W. T. Wu, and J. S. Chen, "Performance and electron transport properties of TiO2 nanocomposite dye-sensitized solar cells," Nanotechnology 19 (10), 7 (2008).
    [51]K. Asagoe, S. Ngamsinlapasathian, Y. Suzuki, and S. Yoshikawa, "Addition of TiO2 nanowires in different polymorphs for dye-sensitized solar cells," Central European Journal of Chemistry 5 (2), 605-619 (2007).
    [52]U. Diebold, "The surface science of titanium dioxide," Surface Science Reports 48 (5-8), 53-229 (2003).
    [53]M. Adachi, Y. Murata, J. Takao, J. T. Jiu, M. Sakamoto, and F. M. Wang, "Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism," Journal of the American Chemical Society 126 (45), 14943-14949 (2004).
    [54]J. T. Jiu, S. Isoda, F. M. Wang, and M. Adachi, "Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film," Journal of Physical Chemistry B 110 (5), 2087-2092 (2006).
    [55]W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," Science 295 (5564), 2425-2427 (2002).
    [56]P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Grtzel, D. D. C. Bradley, J. R. Durrant, and J. Nelson, "Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer," Journal of Physical Chemistry B 110 (15), 7635-7639 (2006).
    [57]Y. F. Gao and M. Nagai, "Morphology evolution of ZnO thin films from aqueous solutions and their application to solar cells," Langmuir 22 (8), 3936-3940 (2006).
    [58]S. Uchida, R. Chiba, M. Tomiha, N. Masaki, and M. Shirai, "Application of titania nanotubes to a dye-sensitized solar cell," Electrochemistry 70 (6), 418-420 (2002).
    [59]D. S. Tsoukleris, I. M. Arabatzis, E. Chatzivasilogiou, A. I. Kontos, V. Belessi, M. C. Bernard, and P. Falaras, "2-Ethyl-1-hexanol based screen-printed titania thin films for dye-sensitized solar cells," Solar Energy 79 (4), 422-430 (2005).
    [60]D. S. Zhang, S. Ito, Y. J. Wada, T. Kitamura, and S. Yanagida, "Nanocrystalline TiO2 electrodes prepared by water-medium screen printing technique," Chemistry Letters 30 (10), 1042-1043 (2001).
    [61]T. L. Ma, T. Kida, M. Akiyama, K. Inoue, S. J. Tsunematsu, K. Yao, H. Noma, and E. Abe, "Preparation and properties of nanostructured TiO2 electrode by a polymer organic-medium screen-printing technique," Electrochemistry Communications 5 (4), 369-372 (2003).
    [62]M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. G. Grtzel, "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers," Journal of the American Chemical Society 127 (48), 16835-16847 (2005).
    [63]T. Sugimoto, X. P. Zhou, and A. Muramatsu, "Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 3. Formation process and size control," Journal of Colloid and Interface Science 259 (1), 43-52 (2003).
    [64]T. Sugimoto, X. P. Zhou, and A. Muramatsu, "Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 4. Shape control," Journal of Colloid and Interface Science 259 (1), 53-61 (2003).
    [65]W. R. Moser, "Advanced Catalysts and Nanostructured Materials," Academic Press (1996).
    [66]M. Schiavello E. Pelizzetti, "Photochemical ConVersion and Storage of Solar energy," Springer (1991).
    [67]J. Karch, R. Birringer, and H. Gleiter, "CERAMICS DUCTILE AT LOW-TEMPERATURE," Nature 330 (6148), 556-558 (1987).
    [68]Y. F. Zhu, J. J. Shi, Z. Y. Zhang, C. Zhang, and X. R. Zhang, "Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide," Analytical Chemistry 74 (1), 120-124 (2002).
    [69]B. L. Bischoff and M. A. Anderson, "Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO2)," Chemistry of Materials 7 (10), 1772-1778 (1995).
    [70]J. Nelson, "Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes," Physical Review B 59 (23), 15374-15380 (1999).
    [71]J. Nelson, S. A. Haque, D. R. Klug, and J. R. Durrant, "Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes," Physical Review B 63 (20), 9 (2001).
    [72]P. D. Cozzoli, A. Kornowski, and H. Weller, "Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods," Journal of the American Chemical Society 125 (47), 14539-14548 (2003).
    [73]A. S. Barnard and P. Zapol, "Predicting the energetics, phase stability, and morphology evolution of faceted and spherical anatase nanocrystals," Journal of Physical Chemistry B 108 (48), 18435-18440 (2004).
    [74]L. Miao, S. Tanemura, S. Toh, K. Kaneko, and M. Tanemura, "Fabrication, characterization and Raman study of anatase TiO2 nanorods by a heating-sol-gel template process," Journal of Crystal Growth 264 (1-3), 246-252 (2004).
    [75]R. L. Penn and J. F. Banfield, "Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania," Geochimica Et Cosmochimica Acta 63 (10), 1549-1557 (1999).
    [76]J. D. Donnay D. Harker, "A new law of crystal morphology extending the Law of Bravais," American Mineralogist 22, 446-467 (1937).
    [77]N. G. Park, J. van de Lagemaat, and A. J. Frank, "Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells," Journal of Physical Chemistry B 104 (38), 8989-8994 (2000).
    [78]A. G. Agrios, I. Cesar, P. Comte, M. K. Nazeeruddin, and M. Gratzel, "Nanostructured composite films for dye-sensitized solar cells by electrostatic layer-by-layer deposition," Chemistry of Materials 18 (23), 5395-5397 (2006).
    [79]C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, "Nanocrystalline titanium oxide electrodes for photovoltaic applications," Journal of the American Ceramic Society 80 (12), 3157-3171 (1997).
    [80]S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, "Influence of scattering layers on efficiency of dye-sensitized solar cells," Solar Energy Materials and Solar Cells 90 (9), 1176-1188 (2006).
    [81]T. Beppu, S. Yamaguchi, and S. Hayase, "Improvement of heat resistant properties of TiO2 nanowires and application to dye-sensitized solar cells," Japanese Journal of Applied Physics 46 (7A), 4307-4311 (2007).
    [82]M. S. Dresselhaus, Y. M. Lin, O. Rabin, A. Jorio, A. G. Souza, M. A. Pimenta, R. Saito, G. G. Samsonidze, and G. Dresselhaus, "Nanowires and nanotubes," Materials Science and Engineering: C 23 (1-2), 129-140 (2003).
    [83]G. Rothenberger, P. Comte, and M. Grtzel, "A contribution to the optical design of dye-sensitized nanocrystalline solar cells," Solar Energy Materials and Solar Cells 58 (3), 321-336 (1999).
    [84]H. S. Jung, S. W. Lee, J. Y. Kim, K. S. Hong, Y. C. Lee, and K. H. Koh, "Correlation between dispersion properties of TiO2 colloidal sols and photoelectric characteristics of TiO2 films," Journal of Colloid and Interface Science 279 (2), 479-483 (2004).
    [85]M. Adachi, T. Harada, and M. Harada, "Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/ tetraethoxysilane system," Langmuir 15 (21), 7097-7100 (1999).

    下載圖示 校內:2011-07-31公開
    校外:2011-07-31公開
    QR CODE