簡易檢索 / 詳目顯示

研究生: 呂孟錡
Lu, Meng-Chi
論文名稱: 氯化膽鹼對於低壓化學氣相沉積法製成鈣鈦礦發光二極體的反應速率與元件特性之研究
Research on reaction rate and component characteristics of perovskite light-emitting diodes prepared by low pressure chemical vapor deposition with choline chloride
指導教授: 賴韋志
Lai, Wei-Chih
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 106
中文關鍵詞: 低壓化學氣相沉積鈣鈦礦發光二極體氯化膽鹼摻雜
外文關鍵詞: Low pressure chemical vapor deposition, perovskite light-emitting diode, choline chloride added
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中探討以氣相的方式成長甲基胺溴化鉛 (CH3NH3PbBr3, MAPbBr3)的鈣鈦礦薄膜,不同於以往使用配置好的溶液去旋塗塗佈之製程方式,我們將鈣鈦礦薄膜分成兩部製程方法,首先利用旋轉塗佈法(spin coating)成長溴化鉛(PbBr2)結晶後,再將旋塗完的薄膜利用低壓化學氣相沉積(LPCVD)系統反應成鈣鈦礦薄膜,並控制系統中反應物甲基溴化胺(CH3NH3Br, MABr)的擴散反應時間、溫度及壓力等多項參數,進而得到多樣化的薄膜。
    此外,我們也比較在溴化鉛前體溶液及化學氣相沉積系統內添加氯化膽鹼(Choline chloride, ChCl)後的鈣鈦礦薄膜特性,利用膽鹼中的陰陽離子與帶正電荷的欠配位Pb^2+離子結合,進而造成PbBr2薄膜形貌改變且氯離子能有效降低表面活化能以提升LPCVD系統的反應速率並可以形成更緻密光滑的薄膜。接著以搭配電子、電洞傳輸層的P-N結構,製作出性能穩定的鈣鈦礦有機發光二極體。在適當的PbBr2與ChCl莫耳數比、反應溫度與反應時間下能得到5,200 cd/m^2的最大發光亮度。

    In this study, we explored the growth of a perovskite film of methylamine bromide in a gas phase. Different from the conventional process of using a solution to spin coating, we will use a perovskite film divided into two step.Firstly, the crystal of lead bromide is grown by spin coating, and then converted into a perovskite film by a low pressure chemical vapor deposition system. And control the reaction of the reaction product methyl bromide diffusion reaction time, temperature and pressure and other parameters, and then obtain a variety of films. In addition, we also compare the characteristics of perovskite film after adding choline chloride (ChCl) in lead bromide precursor solution and chemical vapor deposition system to produce a stable perovskite organic light-emitting diode. body. The maximum luminescence of 5,200 cd/"m" ^"2" can be obtained at a suitable PbBr2 to ChCl molar ratio, reaction temperature and reaction time.

    摘要 I 致謝 IX 目錄 XI 圖目錄 XV 表目錄 XX 第一章 緒論 1 1-1 前言 1 1-2有機電激發光元件的原理與發展 3 1-2-1 有機電激發光元件的原理 3 1-2-2 有機電激發光元件的發展 4 1.3 研究動機與大綱 8 1-3-1 研究動機 8 1-3-2 論文大綱 9 第二章 鈣鈦礦發光二極體發展與原理 10 2-1 前言 10 2-2 有機電激發光元件結構與工作原理 13 2-2-1 載子注入 16 2-2-2 載子傳輸 16 2-2-3 載子復合 17 2-3 低壓化學氣相沉積與物理氣相沉積原理與製程 18 2-3-1 低壓化學氣相沉積 18 2-3-2 物理氣相沉積 20 2-4 鈣鈦礦發光二極體重要文獻回顧 21 2-5 使用化學氣相沉積法製程鈣鈦礦文獻回顧 23 2-6 添加鹽類對鈣鈦礦薄膜與元件特性的改善文獻回顧 28 2-7 本章結論 32 第三章 元件製程與實驗流程 34 3-1 前言 34 3-2 鈣鈦礦發光二極體的製作過程 35 3-2-1 陽極ITO製作過程 35 3-2-2 電洞傳輸層製作過程 38 3-2-3 主動層製作過程 40 3-2-4 電子傳輸層製作過程 44 3-2-5 陰極製作過程 45 3-3元件量測與薄膜分析機台介紹 49 3-3-1電流-亮度-電壓量測系統 ( I -L-V) 49 3-3-2光致發光光譜儀 (PL) 49 3-3-3 紫外-可見光 (UV-Vis) 吸收光譜儀 51 3-3-4 X光繞射儀 (XRD) 51 3-3-5 掃描式電子顯微鏡 (SEM)與能量分散光譜儀(EDS) 52 3-4 本章結論 54 第四章 實驗結果與討論 55 4-1 前言 55 4-2 低壓化學氣相沉積反應之鈣鈦礦 56 4-2-1 旋轉塗佈的溴化鉛薄膜晶體、光學與形貌分析及討論 56 4-2-2 利用LPCVD反應鈣鈦礦之晶體、光學與形貌分析及討論 58 4-2-3 本節結論 65 4-3 添加氯化膽鹼並利用低壓化學氣相沉積反應之鈣鈦礦 67 4-3-1 添加氯化膽鹼後旋轉塗佈的溴化鉛薄膜晶體、光學與形貌分析及討論 67 4-3-2 LPCVD系統中添加氯化膽鹼後反應成鈣鈦礦薄膜之晶體、光學、形貌與元件電性分析及討論 70 4-3-3 本節結論 83 4-4 增加低壓化學氣相沉積反應之反應溫度與反應時間分析與討論 84 4-4-1 增加LPCVD反應時間並對鈣鈦礦薄膜之晶體、光學、形貌與電性分析及討論 84 4-4-2 增加LPCVD反應溫度並對鈣鈦礦薄膜之晶體、光學、形貌與電性分析及討論 91 4-4-3 本節結論 98 4-5 本章結論 100 第五章 論文總結與未來展望 101 5-1 論文總結 101 5-2 未來展望 102 參考文獻 103

    Y.Saito, S.Uemura and K.Hamaguchi, ”Cathode Ray Tube Lighting Elements with Carbon Nanotube Field Emitters”, Phys. Lett. 37, L346 (1998)
    http://www.hightech.tw/index.php/2012-06-06-14-12-38/22-display-technology/113-liquid-crystal-display
    田芊”工程光學” 清華大學出版社, 2006, Ch.3 pp.148-149
    A.W.Blakers, A.Wang, A.M.Milne, J.Zhao, M.A.Green, “Organic Light-Emitting Diodes”, Appl. Phys. 55, 1363(1989)
    曾小東,”光學感測與測量”五南圖書出版社, 2004, Ch3, pp.160-171
    施敏, 李明逵,”半導體元件物理學”國立交通大學出版社, 2013
    N.Baily, “The Future of Organic Light-Emitting Diodes” , Inf.Disp., 16, 12 (2000)
    M.Pope, H.P.Kallmann, P.Magnante, “Electroluminescence in Organic Crystals”, Phys. Lett.38, 2024, December (1962)
    C.W.Tang, S.A.Vanslyke, “Organic electroluminescent diodes.”, Appl Phy. Lett. 57, 913 (1987)
    J.H.Burroughes, “Light-emitting diodes based on conjugated polymers”, Nature 347, 539 (1990)
    Best Research Cell Efficiencies, National Renewable Energy Laboratory, 2017.
    C.Zener, “Interaction between the d -Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure”, Phys. Rev. 82, 403 (1951)
    S.Shi, Y.Li, X.Li and H.Wang, “Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites”, Nature 378 405, 2015.
    B.R.Sutherland, E.H.Sargent, “Perovskite photonic sources“, Nature 10, 295–302 (2016)
    S.Tsutsui,T.Saito, “Organic-inorganic-heterostructure electroluminescent device using a layered perovskite semiconductor”, Appl Phy. Lett. 65, 676(1994)
    K.Chondroudisn, “Electroluminescence from an Organic−Inorganic Perovskite Incorporating a Quaterthiophene Dye within Lead Halide Perovskite Layers”, Adv. Mater.11, 3028 (1999)
    陳金鑫, 黃孝文, ”OLED:有機電激發光材料與元件”,初版,五南圖書出版,2005
    G.Masetti, M.Severi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus, and boron-doped silicon”, IEEE 30, 764 - 769 (1983)
    I.Langmuir, J.Am. Chem. Soc. 40, 1361 (1918).
    S.Miyamoto, Trans. Faraday Soc. 29, 794 (1933).
    A.Dualeh, P.Gao, S.I.Seok, M.K.Nazeeruddin, and M.Gratzel, Chem.
    Mater. 26, 6160 (2014).
    C.Yang, T.Simon, “Numerical simulation and analysis of hybrid physical-chemical vapor deposition to grow uniform perovskite MAPbI3”, Appl Phy. 121, 144903 (2017)
    J.E.Mahan, “Physical Vapor Deposition of Thin Films”, ISBN, 9, 471 (2000)
    Y.K.Chih, J.C.Wang , R.T.Yang , C.C.Liu , Y.C.Chang , Y.Fu , W.C.Lai , Peter Chen , T.C.Wen, Y.C.Huang, C.S.Tsao, and T.F.Guo, “NiOx Electrode Interlayer and 〖"CH" 〗_"3" 〖"NH" 〗_"2" /〖"CH" 〗_"3" 〖"NH" 〗_"3" PbBr_"3" Interface Treatment to Markedly Advance Hybrid Perovskite-Based Light-Emitting Diodes”, Adv. Mater. 28, 8687 (2016)
    K.F.Jensen, D.B.Graves, “Modeling and Analysis of Low Pressure CVD Reactors”, J. Electrochem. Soc, 130, 1983 (1950–1957)
    S.Fay, J.Steinhauser, S.Nicolay, “Grown by LPCVD as TCO for Thin Film Silicon Solar Cells”, CAS, 518, 2961 (2010)
    P.Luo, Z.Liu, ” Uniform, Stable, and Efficient Planar-Heterojunction Perovskite Solar Cells by Facile Low-Pressure Chemical Vapor Deposition under Fully Open-Air Conditions”, Appl, Mater., 7, 2708 (2015)
    M.R.Leyden, L.Meng, “Methylammonium Lead Bromide Perovskite Light-Emitting Diodes by Chemical Vapor Deposition”, Phys. Chem. Lett., 8, 3193-3198 (2017)
    H.W.Lin, “Vacuum-Deposited Organometallic Halide Perovskite Light-Emitting Devices”, Appl, Mater., 9, 40516 (2017)
    G.Tonga, X.Lan, “Surface-activation modified perovskite crystallization for improving photovoltaic performance”, Science, 5, 205 (2017)
    A.G.Aberle, “Surface passivation of crystalline silicon solar cells: a review.”,
    Prog. Photovolt. Res. Appl. 8, 473 (2000).
    Y.Liu, “Nanostructure formation and passivation of large-area black
    silicon for solar cell applications.”, Small 8, 1392-1397 (2012).
    B.Yan, “Innovative dual function nc-SiOx: H layer leading to a >16%
    e_cient multi-junction thin-film silicon solar cell.“, Appl. Phys. Lett., 99,
    113512 (2011).
    J.Xu, “Perovskite-fullerene hybrid materials suppress hysteresis in planar
    diodes.”, Nature., 6, 7081 (2015).
    A.Abate, “Supramolecular halogen bond passivation of organic_inorganic
    halide perovskite solar cells.”, Nano Lett. 14, 3247_3254 (2014).
    J.Huang, “Defect passivation in hybrid perovskite solar cellsusing quaternary ammonium halide anions and cations”, 2017
    B.Yan, “Innovative dual function nc-SiOx: H layer leading to a >16%
    e_cient multi-junction thin-film silicon solar cell.”, Appl. Phys. Lett. 99, 113512 (2011)
    W.C.Lai, K.W.Lin, Y.T.Wang, T.Y.Chiang, Peter Chen, T.F.Guo, “Oxidized Ni/Au Transparent Electrode in Efficient 〖"CH" 〗_"3" 〖"NH" 〗_"3" PbI_3 Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells”, Adv. Mater., 28, 3290 (2016)
    http://www.chemicalbook.com/ChemicalProductProperty_CN_CB9171141.htm
    郭浩中 “太陽能光電技術” 台灣五南圖書出版股份有限公司, 2012
    T.Ma, E.A.Kapustin, S.X.Yin, L.Liang, Z.Zhou, J.Niu, L.H.Li, “Single-crystal x-ray diffraction structures of covalent organic frameworks”, 361, 48 (2018)
    J.I.Goldstein, E.Newbury, J.R.Michael, W.M.Ritchie, J.J.Scott, D.C.Joy, “Scanning Electron Microscopy and X-Ray Microanalysis”, Springer, 550 (2017)

    下載圖示 校內:2023-08-22公開
    校外:2023-08-22公開
    QR CODE