簡易檢索 / 詳目顯示

研究生: 蔡承全
Tsai, Cheng-Chuan
論文名稱: 液體輸出彈性管的波動
Wave Propagation of Elastic Cylinder Conveying Liquid
指導教授: 李森墉
Lee, Sen-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 63
中文關鍵詞: 動脈壓力波彈性管衰減率
外文關鍵詞: pressure wave, elastic tube, decay rate, artery
相關次數: 點閱:116下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   動脈血管循環很早就有理論的發展,不過大都偏重在流體的行為研究,或者是為了實驗方便而過度簡化模型。本文提出一個新的數學模型,描述壓力波在充滿黏性不可壓縮流體的等向性彈性管中的傳輸行為。本模型考慮管徑變化對流體造成的影響,以及管內預壓對壓力波的影響,而且同時考慮徑向和軸向的振動。我們把管壁視為圓柱薄殼,而且管內流體滿足線動量方程以及連續條件之下,推導出統御方程式。於求解過程中,將變數-壓力、最大流速分解成平均項和擾動項,線性化統御方程式,最後從特徵方程式得到壓力波的色散關係 ( dispersion relation),以及衰減因子--波數(wave number)的虛部項。本文將討論不同參數相對於波速,以及波能量衰減的影響,藉此更加了解壓力波的特性。

     The theory for circulation of arteries has been developed early, but most studies are emphasized on fluid behavior or some models for experimental utility are too simplified. A new mathematical model is proposed to describe the pressure wave propagating in the isotropic elastic tube filled with viscous and incompressible fluid. In this model, the effects caused by variation of tube diameter on fluid and the normal stress due to pre-pressure on tube wall are all took into account. The radial and longitudinal vibrations both are introduced. We treat the tub wall as a thin walled cylindrical sell also fluid coincides the linear momentum equation and continuity equation, and therefore, the governing equations are derived. To linearize the governing equation, variables, pressure and maximum fluid velocity are separated into average term and disturbed term. In that way, the dispersion relation of pressure waves is obtained from the characteristic equation. The thesis also discuss the effect of different variables on wave velocity and on energy decay, so that we can realized the property of pressure wave more.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 IX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 4 1.4 論文架構 6 第二章 物理模型架構 7 2.1彈性管壁的統御方程式推導 7 2.1.1應力-位移關係式 8 2.1.2應力-應變關係式 9 2.1.3平衡方程式 10 2.2管內流體的統御方程式推導 13 2.2.1線動量守恆 13 2-2-2連續方程式 16 2.3 總結 17 第三章 解法 18 3.1統御方程式的簡化 18 3.2流體未流動之下的壓力波 20 3.3流體流動之下的壓力波 27 第四章 實驗與數值比較 37 4.1血壓波模擬實驗 37 4.1.1實驗設備 37 4.1.2實驗方法 39 4.1.3實驗結果 41 4.2 數值分析與比較 43 4.2.1波速模擬 43 4.2.2振幅衰減的模擬 53 第五章 結論 59 參考文獻 60 自述 63 表目錄 表4-1: 流體與彈性管各參數模擬值對照表 45 表4-2: 流體無流速下的角頻率、波數及波速表 47 表4-3:流體有流速下的波速關係表 47 表4-4:不考慮阻尼、黏滯力、預壓和蒲松比、流體無流速以及忽略慣性力時的角頻率、波數及波速表 48 圖目錄 圖2-1: 圓管殼各座標示意圖 7 圖2-2: 圓柱殼元素各方向力量示意圖 9 圖2-3: 管內流體的控制體圖 13 圖2-4: 流速分佈圖 14 圖4-1: 產生波源的裝置 37 圖4-2 : 壓力轉換器 38 圖4-3: 實驗架構圖 39 圖4-4 : 壓力波暫態時域圖 42 圖4-5 : 流體無流速下以及流體有流速下的Dispersion Curve of kr 46 圖4-6 : 流體無流速下以及流體有流速下的Dispersion Curve of ki 46 圖4-7 : 流體無流速下,不同預壓的Dispersion Curve of kr 49 圖4-8 : 流體無流速下,不同預壓的Dispersion Curve of ki 49 圖4-9 : 流體無流速下,不同彈性係數的Dispersion Curve of kr 50 圖4-10 : 流體無流速下,不同彈性係數的Dispersion Curve of ki 50 圖4-11 : 流體無流速下,不同黏滯係數的Dispersion Curve of kr 51 圖4-12 : 流體無流速下,不同黏滯係數的Dispersion Curve of ki 51 圖4-13 : 流體無流速下,不同蒲松比的Dispersion Curve of kr 52 圖4-14 : 流體無流速下,不同蒲松比的Dispersion Curve of ki 52 圖4-15 : 經過入口Ch1的壓力波模擬波形 54 圖4-16 : 模擬流體無流速情況之下,波從Ch1傳輸40m、60m時的衰減頻譜 55 圖4-17 : 模擬流體有流速情況之下,波從Ch1傳輸40m、60m時的衰減頻譜 55 圖4-18 : 模擬流體無流速情況之下,波從Ch1傳輸40m,不同彈性係數的管子對衰減情形的 影響 56 圖4-19 : 模擬流體有流速情況之下,波從Ch1傳輸40m,不同彈性係數的管子對衰減情形的 影響 56 圖4-20 : 模擬流體無流速情況之下,波從Ch1傳輸40m,不同蒲松比的管子對衰減情形的影 響 57 圖4-21 : 模擬流體有流速情況之下,波從Ch1傳輸40m,不同蒲松比的管子對衰減情形的影 響 57 圖4-22 : 模擬流體無流速情況之下,波從Ch1傳輸40m,不同黏滯係數的流體對衰減情形的 影響 58 圖4-23 : 模擬流體有流速情況之下,波從Ch1傳輸40m,不同黏滯係數的流體對衰減情形的 影響 58

    [1] Harvey, W., “Movement of the Heart and Blood in Animals”, William
    Fitzer, Frankurt, 1628.
    [2] Milnor, W. R., “Hemodynamics”, 2nd Edition, William&Wilkins, 7, 1989.
    [3] Milnor, W. R., “Hemodynamics”, 2nd Edition, William&Wilkins, 11-16, 1989.
    [4] Milnor, W. R., “Hemodynamics”, 2nd Edition, William&Wilkins, 95-97, 1989.
    [5] Milnor, W. R., “Hemodynamics”, 2nd Edition, William&Wilkins, 106-108,
    1989.
    [6] Milnor, W. R., “Hemodynamics”, 2nd Edition, William&Wilkins, 128-129,
    1989.
    [7] Nichols, W. W. and O’Rourke, M. F., “McDonald’s Blood Flow in
    Arteries”, 3rd Edition, Philadelphia, London, 304-324, 1990.
    [8] Tsangaris, S. and Drikakis, D., ”Pulsating blood flow in an initially
    stressed, anisotropic elastic tube: Linear approximation of pressure
    waves.”, Med. & Biol. Eng. & Comp., v27, n1, Jan, 82-88, 1989.
    [9] Demiray, Hilmi “Wave in initially stressed fluid-filled thick tubes.”,
    J. Biomechanics, v30, n3, 273-276, 1997.
    [10] Wang, Y. Y. L. , Chang, C. C. , Chen, J. C., Hsiu, H. and Wang, W. K.,
    “Pressure wave propagation in a distensible tube arterial model with
    radial dilation.”, IEEE Engineering in Med. Biol. Mag., Jan., 51-56, 1997.
    [11] Wang, Y. Y. L., Lia, W. C., Hsiu, H., Jan, M. Y., and Wang, W. K.,
    “Effect of length on the fundamental resonance frequency of arterial
    models having radial dilatation.”, IEEE Trans. On Biomedical Eng., v47,
    n3, Mar., 313-318, 2000.
    [12] Parel, D. J., Janicki, J. S., Carew, T. E., ”Static anisotropic elastic
    properties of the aorta in living dogs.”, Circ. Res., v25, 765-769, 1969.
    [13] Lamb, H., “Hydrodynamics”, 6th Edition, University Press, Cambridge,
    1932.
    [14] Dym, C. L., “Introduction to theory of shells”, Pergamon Press, Oxford,
    1974.
    [15] Soedel, Werner, “ Vibrations of shells and plates”, Marcel Dekker, New
    York, 1981.
    [16] Graff, Karl F., “Wave motion in elastic solids”, Ohio State University
    Press, 1975.
    [17] Munson, B. R., Young, D. F. and Okiishi, H., “Fundamentals of fluid
    mechanics.”, 3rd Edition, John Wiley & Sons, New York, 1998.
    [18] Nichols, W. W. and O’Rourke, M. F., “McDonald’s Blood Flow in
    Arteries”, 3rd Edition, Philadelphia, London, 103-105, 1990.
    [19] Nichols, W. W. and O’Rourke, M. F., “McDonald’s Blood Flow in
    Arteries”, 3rd Edition, Philadelphia, London, 112-113, 1990.
    [20] Frank, S., Crawford, Jr., “Waves, Berkeley Physics Course, Volume 3.”,
    International Edition, McGraw-Hill, New York, 1994.
    [21] 王唯工, “氣的樂章”, 大塊文化, 台灣, 2002.
    [22] 黃啟裕, “主動脈血壓波與血流波的模擬與分析”, 國立台灣大學物理研究所, 碩士
    論文, 1998.
    [23] 徐清秀, “彈性血管壓力波方程式之初步應用”, 國立台灣師範大學物理研究所, 碩
    士論文, 2000.
    [24] 許昕, “動脈系統藉共振機制傳遞血壓波之研究”, 國立台灣大學電機工程學研究
    所, 博士論文, 2001.

    下載圖示 校內:立即公開
    校外:2005-07-21公開
    QR CODE