| 研究生: |
葉東鉞 Yeh, Tung-Yueh |
|---|---|
| 論文名稱: |
利用短鏈去整合蛋白 Echistatin 及第三型纖維黏設計整合蛋白專一性的拮抗劑 Design of Integrin-specific Antagonists Using Echistatin and Fibronectin Type III Domain |
| 指導教授: |
莊偉哲
Chuang, Woei-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 蛋白質工程 、纖維黏蛋白 、溶解度 、熱穩定性 、拮抗劑 、整合蛋白 、抗血小板藥物 |
| 外文關鍵詞: | Protein engineering, Fibronectin, Solubility, Thermostability, Antagonist, Integrin, Antiplatelet drug |
| 相關次數: | 點閱:77 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
整合蛋白為α/β組合成的異構二具體的細胞表面穿膜受體,參與了包含細胞的增生、遷移、貼附及凝血作用。在血小板凝集及血栓的形成的過程中,整合蛋白αIIbβ3 的參與是不可或缺的。整合蛋白αvβ3及α5β1在許多類型的癌症中都有廣泛的表現,並且能夠辨識呈現在細胞外基質中的RGD motif。因此,在藥理學上抑制這些整蛋白對於疾病的治療和預防具有重要意義,來自於毒蛇毒液中的去整合蛋白是具有淺力的整合蛋白的天然拮抗劑。根據胺基酸序列的長度及雙硫鍵的數目,其可被分為短、中、長鏈及雙聚體等四類。在我們過去的研究當中,我們利用中鏈的去整合蛋白來設計在抑制血小板凝集中具有非常好的活性及安全指數。”安全指數”一詞的定義建立在固定濃度的AP2作用下,去整合蛋白誘導血小板表面的整合蛋白αIIbβ3合活化所需的濃度。我們也成功地利用人類第三型纖維黏蛋白作為模板設計對於整合蛋白αvβ3及α5β1專一性的重組蛋白。在這篇研究中,我們提出利用短鏈去整合蛋白作為模板來促進對於整合蛋白αIIbβ3拮抗劑的活性,以及導入雙硫鍵到第三型纖維黏蛋白的突變株進而增加其熱穩定性及蛋白活性。Echistatin (Ech)是含有49個胺基酸及4對雙硫鍵的短鏈去整合蛋白。在這篇研究中, Ech-KKKRT、Ech-AKGDRR、Ech-PRNRLYG 及Ech-AKGDRR-PRNRLYG突變株對於抑制血小板凝集的IC50值分別為424.2、536.8、470.3及517.5 nM。相較於中鏈的去整合蛋白,短鏈去整合蛋白在抑制血小板凝集的能力傾向於保留原始的胺基酸序列。我們也發現在Ech含有AKGDRR motif對於CHO表現整合蛋白αIIbβ3和fibrinogen結合呈現差的抑制能力,推測其可能具有較好的安全指數。在第三型纖維黏蛋白的研究中,導入L9C-S95C (SL2)雙硫鍵到整合蛋白αvβ3專一性拮抗劑會增加其熱穩定性,從85℃上升到96.7℃。然而其對於整合蛋白αvβ3的抑制活性從94.0 nM 下降到163.7 nM。而在針對整合蛋白α5β1的第三型纖維黏蛋白以及導入L99C/S180C (SL2)、L2C/S81C (LS1)及D3C/P25C (DP1)雙硫鍵的突變株,熱穩定溫度分別為62.4℃、56.7℃、 62.1℃及58.4℃。對於抑制整合蛋白α5β1的活性分別為61.0、194.6、105.9及59.0 nM。這些結果顯示了透過導入雙硫鍵來增加熱穩定性可能不適用於所有第三型纖維黏蛋白的突變株。本篇研究的結果將作為設計整合蛋白αvβ3、α5β1及αIIbβ3專一性藥物的基礎。
Integrins are α/β heterodimeric cell surface receptors and are involved in cell proliferation, migration, adhesion, and hemostasis. Integrin αIIbβ3 is required for platelet aggregation that is essential for hemostasis and thrombosis. Integrins αvβ3 and α5β1 are widely expressed in different cancer types and recognize the RGD motif present in several extracellular matrix proteins. Therefore, pharmacological inhibition of these integrins is of great interest for the treatment and prevention of disease. Disintegrins are the most potent natural antagonists of integrins from viper venoms. According to the amino acid length and disulfide bonds number, disintegrins are classified into small, medium, large and dimeric disintegrins. In our previous study we have used medium disintegrin to design a mutant with good activity in inhibiting platelet aggregation and with high safety index. The term of ”safety index” value was to determine the level of antagonist-induced integrin αIIbβ3 activation by disintegrins in the presence of AP2.We also have successfully used type III domain of human fibronectin (Fn3) as the scaffold to design integrin αvβ3 and α5β1-specific Fn3 mutants. In this study, we proposed to use short disintegrin as a scaffold to improve the activity of integrin αIIbβ3 antagonist and to incorporate the disulfide bond into Fn3 mutant to improve their thermostability and activity. Echistatin (Ech) is a small disintegrin with 49 amino acids and 4 disulfide bonds. In the study of Ech-KKKRT, Ech-AKGDRR, Ech-PRNRLYG and Ech-AKGDRR-PRNRLYG mutants inhibited platelet aggregation with the IC 50 values of 424.2, 536.8, 470.3 and 517.5 nM. In contrast to medium disintegrin, short disintegrin preferred the Linker, RGD and C-terminal region with wild type sequences in inhibiting platelet aggregation. We also found Ech with AKGDRR motif exhibited low activity in inhibiting the adhesion of CHO-expressing integrin αIIbβ3 to fibrinogen, suggesting that it may have high safety index. In the study of Fn3, the incorporation of L9C-S95C (SL2) disulfide bond into integrin αvβ3-specific Fn3 mutant increased its melting temperature (apparent Tm) value 85 ℃ to 96.7 ℃. However, its inhibitory activity decreased from 94.0 nM to 163.7 nM. The Tm values of integrin α5β1-specific Fn3 mutant, and its L99C/S180C (SL2), L2C/S81C (LS1), and D3C/P25C (DP1) disulfide mutants were 62.4 ℃, 56.7 ℃, 62.1℃, and 58.4 ℃. The inhibitory activity of integrin α5β1-specific Fn3 mutant, and its L99C/S180C (SL2), L2C/S81C (LS1), and D3C/P25C (DP1) disulfide bond mutants were 61.0, 194.6, 105.9, and 59.0 nM. These results showed that the increase of thermostability using the incorporation of disulfide bond may not be applied for all of the Fn3 mutants. The results of this study will serve as the basis for the design of integrin αvβ3, α5β1, and αIIbβ3-specific drugs.
Adachi, M., Taki, T., Higashiyama, M., Kohno, N., Inufusa, H., & Miyake, M. (2000). Significance of integrin alpha5 gene expression as a prognostic factor in node-negative non-small cell lung cancer. Clin Cancer Res, 6(1), 96-101.
Andrews, B. A., Schmidt, A. S., & Asenjo, J. A. (2005). Correlation for the partition behavior of proteins in aqueous two-phase systems: effect of surface hydrophobicity and charge. Biotechnol Bioeng, 90(3), 380-390.
Aota, S., Nagai, T., & Yamada, K. M. (1991). Characterization of regions of fibronectin besides the arginine-glycine-aspartic acid sequence required for adhesive function of the cell-binding domain using site-directed mutagenesis. J Biol Chem, 266(24), 15938-15943.
Aota, S., Nomizu, M., & Yamada, K. M. (1994). The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem, 269(40), 24756-24761.
Armstrong, P. C., & Peter, K. (2012). GPIIb/IIIa inhibitors: from bench to bedside and back to bench again. Thromb Haemost, 107(5), 808-814.
Bagby, S., Tong, K. I., & Ikura, M. (2001). Optimization of protein solubility and stability for protein nuclear magnetic resonance. Methods Enzymol, 339, 20-41.
Barkan, D., & Chambers, A. F. (2011). beta1-integrin: a potential therapeutic target in the battle against cancer recurrence. Clin Cancer Res, 17(23), 7219-7223.
Batori, V., Koide, A., & Koide, S. (2002). Exploring the potential of the monobody scaffold: effects of loop elongation on the stability of a fibronectin type III domain. Protein Eng, 15(12), 1015-1020.
Bavishi, C., Trivedi, V., Singh, M., Katz, E., Messerli, F. H., & Bangalore, S. (2017). Duration of Dual Antiplatelet Therapy in Patients with an Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Am J Med, 130(11), 1325.e1321-1325.e1312.
Betz, S. F. (1993). Disulfide bonds and the stability of globular proteins. Protein Sci, 2(10), 1551-1558.
Billings, K. S., Best, R. B., Rutherford, T. J., & Clarke, J. (2008). Crosstalk between the protein surface and hydrophobic core in a core-swapped fibronectin type III domain. J Mol Biol, 375(2), 560-571.
Bledzka, K., Smyth, S. S., & Plow, E. F. (2013). Integrin alphaIIbbeta3: from discovery to efficacious therapeutic target. Circ Res, 112(8), 1189-1200.
Bloom, L., & Calabro, V. (2009). FN3: a new protein scaffold reaches the clinic. Drug Discov Today, 14(19-20), 949-955.
Bowditch, R. D., Halloran, C. E., Aota, S., Obara, M., Plow, E. F., Yamada, K. M., & Ginsberg, M. H. (1991). Integrin alpha IIb beta 3 (platelet GPIIb-IIIa) recognizes multiple sites in fibronectin. J Biol Chem, 266(34), 23323-23328.
Bowditch, R. D., Hariharan, M., Tominna, E. F., Smith, J. W., Yamada, K. M., Getzoff, E. D., & Ginsberg, M. H. (1994). Identification of a novel integrin binding site in fibronectin. Differential utilization by beta 3 integrins. J Biol Chem, 269(14), 10856-10863.
Bredel, M., Bredel, C., Juric, D., Harsh, G. R., Vogel, H., Recht, L. D., & Sikic, B. I. (2005). Functional Network Analysis Reveals Extended Gliomagenesis Pathway Maps and Three Novel MYC-Interacting Genes in Human Gliomas. Cancer Research, 65(19), 8679-8689.
Calderwood, D. A. (2004). Integrin activation. J Cell Sci, 117(Pt 5), 657-666.
Calvete, J. J. (2004). Structures of integrin domains and concerted conformational changes in the bidirectional signaling mechanism of alphaIIbbeta3. Exp Biol Med (Maywood), 229(8), 732-744.
Calvete, J. J., Marcinkiewicz, C., Monleon, D., Esteve, V., Celda, B., Juarez, P., & Sanz, L. (2005). Snake venom disintegrins: evolution of structure and function. Toxicon, 45(8), 1063-1074.
Chernyshenko, V., Petruk, N., Korolova, D., Kasatkina, L., Gornytska, O., Platonova, T., . . . Lugovskoy, E. (2017). Antiplatelet and anti-proliferative action of disintegrin from Echis multisquamatis snake venom. Croat Med J, 58(2), 118-127.
Cho, J., & Mosher, D. F. (2006). Impact of fibronectin assembly on platelet thrombus formation in response to type I collagen and von Willebrand factor. Blood, 108(7), 2229-2236.
Cota, E., Hamill, S. J., Fowler, S. B., & Clarke, J. (2000). Two proteins with the same structure respond very differently to mutation: the role of plasticity in protein stability. J Mol Biol, 302(3), 713-725.
Cota, E., Steward, A., Fowler, S. B., & Clarke, J. (2001). The folding nucleus of a fibronectin type III domain is composed of core residues of the immunoglobulin-like fold. J Mol Biol, 305(5), 1185-1194.
Couchman, J. R., Austria, M. R., & Woods, A. (1990). Fibronectin-cell interactions. J Invest Dermatol, 94(6 Suppl), 7s-14s.
Cox, D., Brennan, M., & Moran, N. (2010). Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov, 9(10), 804-820.
Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 14, 346.
Dani, V. S., Ramakrishnan, C., & Varadarajan, R. (2003). MODIP revisited: re-evaluation and refinement of an automated procedure for modeling of disulfide bonds in proteins. Protein Eng, 16(3), 187-193.
Demeule, B., Lawrence, M. J., Drake, A. F., Gurny, R., & Arvinte, T. (2007). Characterization of protein aggregation: the case of a therapeutic immunoglobulin. Biochim Biophys Acta, 1774(1), 146-153.
Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer, 10(1), 9-22.
Dobson, C. M. (2003). Protein folding and misfolding. Nature, 426(6968), 884-890.
Dombkowski, A. A., & Crippen, G. M. (2000). Disulfide recognition in an optimized threading potential. Protein Eng, 13(10), 679-689.
Dombkowski, A. A., Sultana, K. Z., & Craig, D. B. (2014). Protein disulfide engineering. FEBS Lett, 588(2), 206-212.
Dufour, S., Duband, J. L., Humphries, M. J., Obara, M., Yamada, K. M., & Thiery, J. P. (1988). Attachment, spreading and locomotion of avian neural crest cells are mediated by multiple adhesion sites on fibronectin molecules. Embo j, 7(9), 2661-2671.
Famm, K., & Winter, G. (2006). Engineering aggregation-resistant proteins by directed evolution. Protein Eng Des Sel, 19(10), 479-481.
Fowler, S. B., Poon, S., Muff, R., Chiti, F., Dobson, C. M., & Zurdo, J. (2005). Rational design of aggregation-resistant bioactive peptides: reengineering human calcitonin. Proc Natl Acad Sci U S A, 102(29), 10105-10110.
Frokjaer, S., & Otzen, D. E. (2005). Protein drug stability: a formulation challenge. Nat Rev Drug Discov, 4(4), 298-306.
Fullard, J. F. (2004). The role of the platelet glycoprotein IIb/IIIa in thrombosis and haemostasis. Curr Pharm Des, 10(14), 1567-1576.
Furger, K. A., Allan, A. L., Wilson, S. M., Hota, C., Vantyghem, S. A., Postenka, C. O., . . . Tuck, A. B. (2003). Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Mol Cancer Res, 1(11), 810-819.
Gan, Z. R., Gould, R. J., Jacobs, J. W., Friedman, P. A., & Polokoff, M. A. (1988). Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. J Biol Chem, 263(36), 19827-19832.
Gidalevitz, T., Stevens, F., & Argon, Y. (2013). Orchestration of secretory protein folding by ER chaperones. Biochim Biophys Acta, 1833(11), 2410-2424.
Gould, R. J., Polokoff, M. A., Friedman, P. A., Huang, T. F., Holt, J. C., Cook, J. J., & Niewiarowski, S. (1990). Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med, 195(2), 168-171.
Hazes, B., & Dijkstra, B. W. (1988). Model building of disulfide bonds in proteins with known three-dimensional structure. Protein Eng, 2(2), 119-125.
Hosotani, R., Kawaguchi, M., Masui, T., Koshiba, T., Ida, J., Fujimoto, K., . . . Imamura, M. (2002). Expression of integrin alphaVbeta3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas, 25(2), e30-35.
Huang, T. F. (1998). What have snakes taught us about integrins? Cell Mol Life Sci, 54(6), 527-540.
Hung, Y. C., Kuo, Y. J., Huang, S. S., & Huang, T. F. (2017). Trimucrin, an Arg-Gly-Asp containing disintegrin, attenuates myocardial ischemia-reperfusion injury in murine by inhibiting platelet function. Eur J Pharmacol, 813, 24-32.
Hynes, R. O., Schwarzbauer, J. E., & Tamkun, J. W. (1984). Fibronectin: a versatile gene for a versatile protein. Ciba Found Symp, 108, 75-92.
Jacobs, S. A., Wu, S. J., Feng, Y., Bethea, D., & O'Neil, K. T. (2010). Cross-interaction chromatography: a rapid method to identify highly soluble monoclonal antibody candidates. Pharm Res, 27(1), 65-71.
Jespers, L., Schon, O., Famm, K., & Winter, G. (2004). Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol, 22(9), 1161-1165.
Kapila, Y. L., Niu, J., & Johnson, P. W. (1997). The high affinity heparin-binding domain and the V region of fibronectin mediate invasion of human oral squamous cell carcinoma cells in vitro. J Biol Chem, 272(30), 18932-18938.
Kim, D. Y., Kandalaft, H., Ding, W., Ryan, S., van Faassen, H., Hirama, T., . . . Tanha, J. (2012). Disulfide linkage engineering for improving biophysical properties of human VH domains. Protein Eng Des Sel, 25(10), 581-589.
Kim, S., Harris, M., & Varner, J. A. (2000). Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. J Biol Chem, 275(43), 33920-33928.
Kita, D., Takino, T., Nakada, M., Takahashi, T., Yamashita, J., & Sato, H. (2001). Expression of dominant-negative form of Ets-1 suppresses fibronectin-stimulated cell adhesion and migration through down-regulation of integrin alpha5 expression in U251 glioma cell line. Cancer Res, 61(21), 7985-7991.
Koide, A., Bailey, C. W., Huang, X., & Koide, S. (1998). The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol, 284(4), 1141-1151.
Koide, A., Gilbreth, R. N., Esaki, K., Tereshko, V., & Koide, S. (2007). High-affinity single-domain binding proteins with a binary-code interface. Proc Natl Acad Sci U S A, 104(16), 6632-6637.
Koide, A., & Koide, S. (2007). Monobodies: antibody mimics based on the scaffold of the fibronectin type III domain. Methods Mol Biol, 352, 95-109.
Kren, A., Baeriswyl, V., Lehembre, F., Wunderlin, C., Strittmatter, K., Antoniadis, H., . . . Christofori, G. (2007). Increased tumor cell dissemination and cellular senescence in the absence of beta1-integrin function. Embo j, 26(12), 2832-2842.
Le, Q. A., Joo, J. C., Yoo, Y. J., & Kim, Y. H. (2012). Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge. Biotechnol Bioeng, 109(4), 867-876.
Lienqueo, M. E., Mahn, A., Navarro, G., Salgado, J. C., Perez-Acle, T., Rapaport, I., & Asenjo, J. A. (2006). New approaches for predicting protein retention time in hydrophobic interaction chromatography. J Mol Recognit, 19(4), 260-269.
Lincoff, A. M., Califf, R. M., & Topol, E. J. (2000). Platelet glycoprotein IIb/IIIa receptor blockade in coronary artery disease. J Am Coll Cardiol, 35(5), 1103-1115.
Lipovsek, D. (2011). Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel, 24(1-2), 3-9.
Lipovsek, D., Lippow, S. M., Hackel, B. J., Gregson, M. W., Cheng, P., Kapila, A., & Wittrup, K. D. (2007). Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol, 368(4), 1024-1041.
Luo, B. H., & Springer, T. A. (2006). Integrin structures and conformational signaling. Curr Opin Cell Biol, 18(5), 579-586.
Maglott, A., Bartik, P., Cosgun, S., Klotz, P., Ronde, P., Fuhrmann, G., . . . Dontenwill, M. (2006). The small alpha5beta1 integrin antagonist, SJ749, reduces proliferation and clonogenicity of human astrocytoma cells. Cancer Res, 66(12), 6002-6007.
Magnussen, A., Kasman, I. M., Norberg, S., Baluk, P., Murray, R., & McDonald, D. M. (2005). Rapid access of antibodies to alpha5beta1 integrin overexpressed on the luminal surface of tumor blood vessels. Cancer Res, 65(7), 2712-2721.
Mao, Y., & Schwarzbauer, J. E. (2005). Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol, 24(6), 389-399.
Marrink, J., vd Geest, S., Sinnema, R., Vellenga, E., & de Vries, E. G. (1985). Fibronectin-complex (FN-C) present in normal plasma. Thrombosis research, 37(6), 689-692.
Martensson, L. G., Karlsson, M., & Carlsson, U. (2002). Dramatic stabilization of the native state of human carbonic anhydrase II by an engineered disulfide bond. Biochemistry, 41(52), 15867-15875.
Martin, S., Cosset, E. C., Terrand, J., Maglott, A., Takeda, K., & Dontenwill, M. (2009). Caveolin-1 regulates glioblastoma aggressiveness through the control of alpha(5)beta(1) integrin expression and modulates glioblastoma responsiveness to SJ749, an alpha(5)beta(1) integrin antagonist. Biochim Biophys Acta, 1793(2), 354-367.
Mas-Moruno, C., Rechenmacher, F., & Kessler, H. (2010). Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anticancer Agents Med Chem, 10(10), 753-768.
Matsumura, M., Becktel, W. J., Levitt, M., & Matthews, B. W. (1989). Stabilization of phage T4 lysozyme by engineered disulfide bonds. Proc Natl Acad Sci U S A, 86(17), 6562-6566.
Matsumura, M., Signor, G., & Matthews, B. W. (1989). Substantial increase of protein stability by multiple disulphide bonds. Nature, 342(6247), 291-293.
Melnik, B. S., Povarnitsyna, T. V., Glukhov, A. S., Melnik, T. N., Uversky, V. N., & Sarma, R. H. (2012). SS-Stabilizing Proteins Rationally: Intrinsic Disorder-Based Design of Stabilizing Disulphide Bridges in GFP. J Biomol Struct Dyn, 29(4), 815-824.
Nagai, T., Yamakawa, N., Aota, S., Yamada, S. S., Akiyama, S. K., Olden, K., & Yamada, K. M. (1991). Monoclonal antibody characterization of two distant sites required for function of the central cell-binding domain of fibronectin in cell adhesion, cell migration, and matrix assembly. J Cell Biol, 114(6), 1295-1305.
Nieswandt, B., Bergmeier, W., Schulte, V., Takai, T., Baumann, U., Schmidt, R. E., . . . Gessner, J. E. (2003). Targeting of platelet integrin alphaIIbbeta3 determines systemic reaction and bleeding in murine thrombocytopenia regulated by activating and inhibitory FcgammaR. Int Immunol, 15(3), 341-349.
Obara, M., Kang, M. S., & Yamada, K. M. (1988). Site-directed mutagenesis of the cell-binding domain of human fibronectin: separable, synergistic sites mediate adhesive function. Cell, 53(4), 649-657.
Pabo, C. O., & Suchanek, E. G. (1986). Computer-aided model-building strategies for protein design. Biochemistry, 25(20), 5987-5991.
Parker, M. H., Chen, Y., Danehy, F., Dufu, K., Ekstrom, J., Getmanova, E., . . . Lipovsek, D. (2005). Antibody mimics based on human fibronectin type three domain engineered for thermostability and high-affinity binding to vascular endothelial growth factor receptor two. Protein Eng Des Sel, 18(9), 435-444.
Parsons-Wingerter, P., Kasman, I. M., Norberg, S., Magnussen, A., Zanivan, S., Rissone, A., . . . McDonald, D. M. (2005). Uniform overexpression and rapid accessibility of alpha5beta1 integrin on blood vessels in tumors. Am J Pathol, 167(1), 193-211.
Pawar, A. P., Dubay, K. F., Zurdo, J., Chiti, F., Vendruscolo, M., & Dobson, C. M. (2005). Prediction of "aggregation-prone" and "aggregation-susceptible" regions in proteins associated with neurodegenerative diseases. J Mol Biol, 350(2), 379-392.
Payrhuber, D., Thieves, K., Sangaletti, P., Muehlmann, J., & Frass, M. (2018). Case Reports of Five Cancer Patients with Unusual Course. Homeopathy.
Petersen, M. T., Jonson, P. H., & Petersen, S. B. (1999). Amino acid neighbours and detailed conformational analysis of cysteines in proteins. Protein Eng, 12(7), 535-548.
Pierschbacher, M. D., & Ruoslahti, E. (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 309(5963), 30-33.
Plaxco, K. W., Spitzfaden, C., Campbell, I. D., & Dobson, C. M. (1997). A comparison of the folding kinetics and thermodynamics of two homologous fibronectin type III modules. J Mol Biol, 270(5), 763-770.
Pytela, R., Pierschbacher, M. D., & Ruoslahti, E. (1985). Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell, 40(1), 191-198.
Reardon, D. A., Neyns, B., Weller, M., Tonn, J. C., Nabors, L. B., & Stupp, R. (2011). Cilengitide: an RGD pentapeptide alphanubeta3 and alphanubeta5 integrin inhibitor in development for glioblastoma and other malignancies. Future Oncol, 7(3), 339-354.
Roffi, M., Patrono, C., Collet, J.-P., Mueller, C., Valgimigli, M., Andreotti, F., . . . Group, E. S. C. S. D. (2016). 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevationTask Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). European Heart Journal, 37(3), 267-315.
Rosenthal, M. A., Davidson, P., Rolland, F., Campone, M., Xue, L., Han, T. H., . . . Lombardi, A. (2010). Evaluation of the safety, pharmacokinetics and treatment effects of an alpha(nu)beta(3) integrin inhibitor on bone turnover and disease activity in men with hormone-refractory prostate cancer and bone metastases. Asia Pac J Clin Oncol, 6(1), 42-48.
Ruoslahti, E. (1984). Fibronectin in cell adhesion and invasion. Cancer Metastasis Rev, 3(1), 43-51.
Sawada, K., Mitra, A. K., Radjabi, A. R., Bhaskar, V., Kistner, E. O., Tretiakova, M., . . . Lengyel, E. (2008). Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res, 68(7), 2329-2339.
Schwarzbauer, J. E. (1991). Fibronectin: from gene to protein. Curr Opin Cell Biol, 3(5), 786-791.
Sharma, A., Askari, J. A., Humphries, M. J., Jones, E. Y., & Stuart, D. I. (1999). Crystal structure of a heparin- and integrin-binding segment of human fibronectin. Embo j, 18(6), 1468-1479.
Shattil, S. J., Kim, C., & Ginsberg, M. H. (2010). The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol, 11(4), 288-300.
Sheldrake, H. M., & Patterson, L. H. (2009). Function and antagonism of beta3 integrins in the development of cancer therapy. Curr Cancer Drug Targets, 9(4), 519-540.
Shimaoka, M., & Springer, T. A. (2003). Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov, 2(9), 703-716.
Siadat, O. R., Lougarre, A., Lamouroux, L., Ladurantie, C., & Fournier, D. (2006). The effect of engineered disulfide bonds on the stability of Drosophila melanogaster acetylcholinesterase. BMC Biochem, 7, 12.
Sowdhamini, R., Srinivasan, N., Shoichet, B., Santi, D. V., Ramakrishnan, C., & Balaram, P. (1989). Stereochemical modeling of disulfide bridges. Criteria for introduction into proteins by site-directed mutagenesis. Protein Eng, 3(2), 95-103.
Swencki-Underwood, B., Mills, J. K., Vennarini, J., Boakye, K., Luo, J., Pomerantz, S., . . . Amegadzie, B. (2008). Expression and characterization of a human BMP-7 variant with improved biochemical properties. Protein Expr Purif, 57(2), 312-319.
Takayama, S., Ishii, S., Ikeda, T., Masamura, S., Doi, M., & Kitajima, M. (2005). The relationship between bone metastasis from human breast cancer and integrin alpha(v)beta3 expression. Anticancer Res, 25(1a), 79-83.
Tamkun, J. W., DeSimone, D. W., Fonda, D., Patel, R. S., Buck, C., Horwitz, A. F., & Hynes, R. O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell, 46(2), 271-282.
Thornton, J. M. (1981). Disulphide bridges in globular proteins. J Mol Biol, 151(2), 261-287.
Tomiyama, Y., Tsubakio, T., Piotrowicz, R. S., Kurata, Y., Loftus, J. C., & Kunicki, T. J. (1992). The Arg-Gly-Asp (RGD) recognition site of platelet glycoprotein IIb-IIIa on nonactivated platelets is accessible to high-affinity macromolecules. Blood, 79(9), 2303-2312.
Trevino, S. R., Scholtz, J. M., & Pace, C. N. (2007). Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa. J Mol Biol, 366(2), 449-460.
Tsai, I. H., Wang, Y. M., & Lee, Y. H. (1994). Characterization of a cDNA encoding the precursor of platelet aggregation inhibition and metalloproteinase from Trimeresurus mucrosquamatus venom. Biochim Biophys Acta, 1200(3), 337-340.
Tseng, Y. L., Peng, H. C., & Huang, T. F. (2004). Rhodostomin, a disintegrin, inhibits adhesion of neutrophils to fibrinogen and attenuates superoxide production. J Biomed Sci, 11(5), 683-691.
Vellon, L., Menendez, J. A., Liu, H., & Lupu, R. (2007). Up-regulation of alphavbeta3 integrin expression is a novel molecular response to chemotherapy-induced cell damage in a heregulin-dependent manner. Differentiation, 75(9), 819-830.
Veronese, F. M., & Mero, A. (2008). The impact of PEGylation on biological therapies. BioDrugs, 22(5), 315-329.
Virtanen, I., Korhonen, M., Kariniemi, A. L., Gould, V. E., Laitinen, L., & Ylanne, J. (1990). Integrins in human cells and tumors. Cell Differ Dev, 32(3), 215-227.
Wahlberg, E., & Hard, T. (2006). Conformational stabilization of an engineered binding protein. J Am Chem Soc, 128(23), 7651-7660.
Wei, M., Xu, X., & Li, C. (2017). Identification and expression of CAMTA genes in Populus trichocarpa under biotic and abiotic stress. Sci Rep, 7.
Wiecek, A., Nieszporek, T., & Chudek, J. (2007). Perspectives in the treatment of renal anaemia new concepts and new drugs. Prilozi, 28(1), 225-237.
Wierzbicka-Patynowski, I., & Schwarzbauer, J. E. (2003). The ins and outs of fibronectin matrix assembly. J Cell Sci, 116(Pt 16), 3269-3276.
Williams, E. C., Janmey, P. A., Johnson, R. B., & Mosher, D. F. (1983). Fibronectin. Effect of disulfide bond reduction on its physical and functional properties. J Biol Chem, 258(9), 5911-5914.
Willuda, J., Honegger, A., Waibel, R., Schubiger, P. A., Stahel, R., Zangemeister-Wittke, U., & Pluckthun, A. (1999). High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res, 59(22), 5758-5767.
Wilson, S. J., Newby, D. E., Dawson, D., Irving, J., & Berry, C. (2017). Duration of dual antiplatelet therapy in acute coronary syndrome. Heart, 103(8), 573-580.
Wu, S. J., Luo, J., O'Neil, K. T., Kang, J., Lacy, E. R., Canziani, G., . . . Feng, Y. (2010). Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng Des Sel, 23(8), 643-651.
Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., & Arnaout, M.A. (2002). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science, 296(5565):151-5.
Xu, C. S., & Rahman, S. (2001). Identification by Site-directed Mutagenesis of Amino Acid Residues Flanking RGD Motifs of Snake Venom Disintegrins for Their Structure and Function. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 33(2), 153-157.
Yasuda, T., Gold, H. K., Leinbach, R. C., Yaoita, H., Fallon, J. T., Guerrero, L., . . . Collen, D. (1991). Kistrin, a polypeptide platelet GPIIb/IIIa receptor antagonist, enhances and sustains coronary arterial thrombolysis with recombinant tissue-type plasminogen activator in a canine preparation. Circulation, 83(3), 1038-1047.
Zhang, D. W., Burton-Wurster, N., & Lust, G. (1995). Alternative splicing of ED-A and ED-B sequences of fibronectin pre-mRNA differs in chondrocytes from different cartilaginous tissues and can be modulated by biological factors. J Biol Chem, 270(4), 1817-1822.
Zutter, M. M., Santoro, S. A., Staatz, W. D., & Tsung, Y. L. (1995). Re-expression of the alpha 2 beta 1 integrin abrogates the malignant phenotype of breast carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 92(16), 7411-7415.
徐錦旺 (2005). Design of Integrin v3-Specific Antagonist Using the Tenth Module of
Fibronectin Type III Domain. Master Degree, National Cheng Kung University, Taiwan.
張永昇 (2003). Design, Structure Determination, and Biological Evaluation of Potent Integrin alpha5beta1 and/or alphavbeta3-Specific Antagonist Using the Ninth and/or Tenth Module of Fibronectin Type III Domain. Doctor Degree, National Cheng Kung University, Taiwan.
陳柔瑞 (2016). The Roles of the KGD Loop, C-terminus, and Dimeric Forms of Disintegrins in the Interactions of Integrins. Master Degree, National Cheng Kung University, Taiwan.
林舉征 (2017). Protein Engineering of VEGFR2-Specific Antagonist Using the Fibronectin Type III Domain to Improve its Thermostability and Solubility. Master Degree, National Cheng Kung University, Taiwan.
何艾樺 (2017). Design of Integrin αIIbβ3-Specific Disintegrin Variants with a Low Risk of Bleeding. Master Degree, National Cheng Kung University, Taiwan.
校內:2023-08-23公開