| 研究生: |
蘇鼎鈞 Su, Ting-Chun |
|---|---|
| 論文名稱: |
無電鍍銀於多壁奈米碳管之合成與性質研究 Synthesis and Characterization of Electroless Ag Plating on Multiwalled Carbon Nanotube |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 無電鍍 、奈米碳管 、熱介面材料 |
| 外文關鍵詞: | Electroless plating, Carbon Nanotube, Thermal Interface Material |
| 相關次數: | 點閱:67 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係利用無電鍍方式將多壁奈米碳管析鍍銀金屬,合成銀/奈米碳管複合材料,期能做為一優良之熱介面材料。實驗首先在碳管表面進行酸洗,目的為在碳管外壁接上官能基團,隨後以敏化活化法及錫鈀膠體活化法分別在碳管表面進行活化,還原鈀奈米顆粒作為催化中心,催化後續鍍銀反應(銀鏡反應),使之能均勻快速進行。同時利用實驗設計(Design of Experiment, DOE)在活化及鍍銀階段以不同震盪與攪拌時間找出最佳化參數,得到活化及鍍銀之最佳效果。另外,為得知複合材料之熱傳導效果,將銀/奈米碳管進行壓錠及燒結,降低試片中孔隙率並求得熱導係數K。
實驗結果顯示活化過程中,鈀含量皆隨著攪拌時間增加而減少;鈀含量多寡與鍍銀量呈現正相關行為,鈀催化銀效果顯著。本實驗所用之無電鍍法可成功於碳管表面附著奈米銀顆粒,然而尚無法達到完全緻密化效果,造成燒結階段仍存在大量孔隙,且銀奈米粒子與碳管間鍵結力弱,部份銀燒結後成長為微米等級大顆粒,比較燒結後之Ag-MWCNTs與燒結前之K值僅有3.3%提升,而比較有無銀附著情形則提升21%。
This study fabricated Ag/MWCNTs composite by electroless method and investigated its thermal property. In the beginning stage, MWCNTs was oxidized by acid treatment to create functional groups on the surface of MWCNTs. Then one-step or two-step process was applied to activate the MWCNTs by depositing Pd nuclei. Pd can catalyze the deposition of Ag on MWCNT in the following silver mirror reaction. We also used DOE (Design of Experiment) to achieve the optimum conditions of activation and Ag plating processes by controlling stirring and sonication time. In order to measure the thermal conductivity of the composite, the Ag/MWCNTs was pressed and sintered to produce pellets for laser flash measurement. Results show that the Pd content decreased as the stirring time increases. The amount of Pd also influence the content of Ag. Compact Ag deposit on MWCNTs could be observed at some regions, while Ag deposit was not uniform on the MWCNTs. Because of the non-uniform Ag deposition and weak bonding between Ag and MWCNTs, large extent of porosity still remained after sintering. The thermal conductivity, K, was enhanced by 3.3% with sintering for the Ag coated MWCNT. Yet the Ag coated MWCNTs gained an improvement of 21% in K value over the pristine MWCNTs.
[1] S. Iijima, "Helical Microtubules of Graphitic Carbon", Nature, Vol. 354, No.6430, 1991, pp. 56-58.
[2] P. J. F. Harris, "Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century", The Press Syndicate of the University of Cambridge, United Kindom, 2001, pp. 3-6.
[3] 李偉立, "2010年諾貝爾物理獎-碳奈米結構的美", 科學發展, 2011, pp. 54-59.
[4] P. R. Bandaru, "Electrical Properties and Applications of Carbon Nanotube Structures," Journal of Nanoscience and Nanotechnology, Vol. 7, No. 4-1, 2007, pp. 1239-1267.
[5] P. M. Ajayan, "Nanotubes from Carbon", Chemical Reviews, Vol. 99, 1999, pp. 1787-1799.
[6] K. B. K. Teo, C. Singh, M. Chhowalla and W. I. Milne, "Catalytic Synthesis of Carbon Nanotubes and Nanofibers", Encyclopedia of Nanoscience and Nanotechnology, 2003, pp.1-22.
[7] B. I. Yakobson and R. E. Smalley, "Fullerene Nanotubes: C 1,000,000 and Beyond: Some Unusual New Molecules—Long, Hollow Fibers with Tantalizing Electronic and Mechanical Properties—Have Joined Diamonds and Graphite in the Carbon Family", American Scientist, Vol. 85, No. 4, 1997, pp. 324-337.
[8] R. S. Ruoff and D. C. Lorents, "Mechanical and Thermal Properties of Carbon Nanotubes", Carbon, Vol. 33, No. 7, 1995, pp. 925-930.
[9] Z. Yao, C. C. Zhu, M. Cheng and J. Liu, "Mechanical Properties of Carbon Nanotube by Molecular Dynamics Simulation", Computational Materials Science, Vol. 22, No. 3-4, 2001, pp. 180-184.
[10] A. Javey, J. Guo, Q. Wang, M. Lundstrom and H. Dai, "Ballistic Carbon Nanotube Field-Effect Transistors", Nature, Vol. 424, 2003, pp. 654-657.
[11] J. Hone, M. Whitney, C. Piskoti and A. Zettl, "Thermal Conductivity of Single-Walled Carbon Nanotubes", Physical Review B, Vol. 59, No. 4, 1999, pp. 2514-2516.
[12] P. Kim, L. Shi, A. Majumdar and P. L. McEuen, "Thermal Transport Measurements of Individual Multiwalled Nanotubes", Physical Review Letters, Vol. 87, No. 21, 2001, pp. 215502-1~215502-4.
[13] J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt and R. E. Smally, "Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films", Applied Physics Letters, Vol. 77, No.5, 2000, pp. 666-668.
[14] W. Yi, L. Lu, D. L. Zang, Z. W. Pan and S. S. Xie, "Linear Specific Heat of Carbon Nanotubes", Physical Review B, Vol. 59, No. 14 , 1999 , pp. 9015-9018.
[15] A. Mizel, L. X. Benedict, M. L. Cohen, S. G. Louie, A. Zettl, N. K. Budraa and W. P. Beyermann, "Analysis of the Low-Temperature Specific Heat of Multiwalled Carbon Nanotubes and Carbon Nanotube Ropes", Physical Review B, Vol. 60, No. 5, 1999, pp. 3264-3270.
[16] S. Berber, Y. K. Kwon and D. Tománek, "Unusually High Thermal Conductivity of Carbon Nanotubes", Physical Review Letters, Vol. 84, No. 20, 2000, pp. 4613-4616.
[17] 郭政次、朝春光, "奈米結構材料科學", 全華科技圖書, 台灣, 2004, pp. 6-11.
[18] H. Xie, A. Cai and X. Wang, "Thermal Diffusivity and Conductivity of Multiwalled Carbon Nanotube Arrays", Physics Letters, Section A: General, Atomic and Solid State Physics, Vol. 369, No. 1-2, 2007, pp. 120-123.
[19] A. O. Mohamed and S. Deepak, "Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes", Nanotechnology, Vol. 12, No. 1, 2001 , pp. 21-24.
[20] J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker, "Electronic Structure of Atomically Resolved Carbon Nanotubes", Nature, Vol. 391, No. 6662, 1998, pp. 59-62.
[21] Y. Cheng and O. Zhou, "Electron Field Emission from Carbon Nanotubes", Comptes Rendus Physique, Vol. 4, No. 9, 2003, pp. 1021-1033.
[22] P. C. Ma, B. Z. Tang and J. K. Kim, "Effect of CNT Decoration with Silver Nanoparticles on Electrical Conductivity of CNT-Polymer Composites", Carbon, Vol. 46, No. 11, 2008, pp. 1497-1505.
[23] Y. Ye and T. Guo, "Improvement of the Field Emission of Carbon Nanotubes-Metal Nanocomposite", Journal of Materials Science: Materials in Electronics, Vol. 24, No. 6, 2012, pp. 1775-1781.
[24] Y. X. You, Y. Ye, Y. J. Su, Q. Z. Tang and T. L. Guo, "Preparation and Field Emission Properties of Ag-CNTs by Electroless Plating", Advanced Materials Research, Vol. 148-149, 2010, pp. 983-986.
[25] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park and J. M. Kim, "Fully Sealed, High-Brightness Carbon-Nanotube Field-Emission Display", Applied Physics Letters, Vol. 75, No. 20, 1999, pp. 3129-3131.
[26] W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J. P. Schnell, V. Semet, V. T. Binh and O. Groening, "Carbon Nanotubes as Field Emission Sources", Journal of Materials Chemistry, Vol. 14, No. 6, 2004, pp. 933-943.
[27] W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving and M. Engelhardt, "Comprehensive Study of the Resistivity of Copper Wires with Lateral Dimensions of 100 nm and Smaller", Journal of Applied Physics, Vol. 97, No. 2, 2005, pp. 023706-1~023706-7.
[28] R. Martel, T. Schmidt, H. R. Shea, T. Hertel and P. Avouris, "Single- and Multi-Wall Carbon Nanotube Field-Effect Transistors", Applied Physics Letters, Vol. 73, No. 17, 1998, pp. 2447-2449.
[29] M. Russ, S. S. Rahatekar, K. Koziol, B. Farmer and H. X. Peng, "Length-Dependent Electrical and Thermal Properties of Carbon Nanotube-Loaded Epoxy Nanocomposites", Composites Science and Technology, Vol. 81, 2013, pp. 42-47.
[30] H. Dai, "Carbon Nanotubes: Synthesis, Integration and Properties", Accounts of Chemical Research, Vol. 35, No. 12, 2002, pp. 1035-1044.
[31] F. Balavoine, P. Schultz, C. Richard, V. Mallouh, T. W. Ebbesen and C. Mioskowski, "Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors", Angewandte Chemie International Edition, Vol. 38, No. 13/14, 1999, pp. 1912-1915.
[32] Y. Z. Robert, J. Chen, D. Wang and H. Dai, "Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization", Journal of the American Chemical Society, Vol. 123, 2001, pp. 3838-3839.
[33] J. Koehne, J. Li, A. M. Cassell, H. Chen, Q. Ye, H. T. Ng, J. Han and M. Meyyappan, "The Fabrication and Electrochemical Characterization of Carbon Nanotube Nanoelectrode Arrays", Journal of Materials Chemistry, Vol. 14, 2004, pp. 676-684.
[34] Y. P. Sun, K. Fu, Y. Lin and W. Huang, "Functionalized Carbon Nanotubes: Properties and Applications", Accounts of Chemical Research, Vol. 35, No. 12, 2002, pp. 1096-1104.
[35] Y. L. Liu, Y. H. Chang and M. Liang, "Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) Multi-bonded Carbon Nanotube (CNT): Preparation and Formation of PPO/CNT Nanocomposites", Polymer, Vol. 49, No. 25, 2008, pp. 5405-5409.
[36] J. A. Kim, D. G. Seong, T. J. Kang and J. R. Youn, "Effects of Surface Modification on Rheological and Mechanical Properties of CNT/Epoxy Composites", Carbon, Vol. 44, No.10, 2006, pp. 1898-1905.
[37] F. H. Gojny, J. Nastalczyk, Z. Roslaniec and K. Schulte, "Surface Modified Multi-Walled Carbon Nanotubes in CNT/Epoxy-Composites", Chemical Physics Letters, Vol. 370, No. 5-6, 2003, pp. 820-824.
[38] T. M. Day, P. R. Unwin, N. R. Wilson and J. V. Macpherson, "Electrochemical Templating of Metal Nanoparticles and Nanowires on Single-Walled Carbon Nanotube Networks", Journal of the American Chemical Society, Vol. 127, 2005, pp. 10639-10647.
[39] B. M. Quinn, C. Dekker and S. G. Lemay, "Electrodeposition of Noble Metal Nanoparticles on Carbon Nanotubes", Journal of the American Chemical Society, Vol. 127, 2005, pp. 6146-6147.
[40] K. Kim, S. H. Lee, W. Yi, J. Kim, J. W. Choi, Y. Park and J. I. Jin "Efficient Field Emission from Highly Aligned, Graphitic Nanotubes Embedded with Gold Nanoparticles", Advanced Materials, Vol.15, 2003, pp. 1618-1622.
[41] W. Chen, K. P. Loh, H. Xu and A. T. S. Wee, "Nanoparticle Dispersion on Reconstructed Carbon Nanomeshes", Langmuir, Vol. 20, 2004, pp. 10779-10784.
[42] P. Chen, X. Wu, J. Lin and K. L. Tan, "Synthesis of Cu Nanoparticles and Microsized Fibers by Using Carbon Nanotubes as a Template", The Journal of Physical Chemistry B, Vol. 103, 1999, pp. 4559-4561.
[43] G. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin, "Carbon nanotubule membranes for electrochemical energy storage and production", Nature, Vol. 393, 1998, pp. 346-349.
[44]R. Sard, "The Nucleation, Growth, and Structure of Electroless Copper Deposits", Journal of the Electrochemical Society, Vol. 117, 1970, pp. 864-870.
[45] L. N. Wang Gui xiang, Li De yu, "Activation Process for Plating on Plastics", Electroplating& Pollution Control, Vol. 24, 2004, pp. 21-23.
[46] G. A. Krulik, "Tin-Palladium Catalysts for Electroless Plating", Platinum Metals Review, Vol. 26, No. 2, 1982, pp. 58-64.
[47] D. D. L. Chung, "Thermal Interface Materials", Journal of Materials Engineering and Performance, Vol. 10, 2001, pp. 56-59.
[48]J. Liu, T. Wang, B. Carlbergl and M. Inoue, "Recent Progress of Thermal Interface Materials", 2nd Electronics Systemintergration Technology Conference, Greenwich, 1-4 September 2008, pp. 351-358.
[49] R. Prasher, "Thermal Interface Materials:Historical Perspective, Status and Future Directions", Proceedings of the IEEE, Vol. 94, No. 8, 2006, pp. 1571-1586.
[50] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson and J. E. Fischer, "Carbon Nanotube Composites for Thermal Management", Applied Physics Letters, Vol. 80, No. 2767, 2002, pp. 2767-2769.
[51] Z. Han and A. Fina, "Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review", Progress in Polymer Science (Oxford), Vol. 36, No. 7, 2011, pp. 914-944.
[52] H. Im and J. Kim, "Thermal Conductivity of A Graphene Oxide-Carbon Nanotube Hybrid/Epoxy Composite", Carbon, Vol. 50, No. 15, 2012, pp. 5429-5440.
[53] R. Prasher, "Thermal Conductance of Single-Walled Carbon Nanotube Embedded in An Elastic Half-Space", Applied Physics Letters, Vol. 90, No. 143110, 2007, pp. 143110-1~143110-3.
[54] M. A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai and K. E. Goodson, "Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays", Journal of Heat Transfer, Vol. 130, 2008, pp. 052401-1~052401-9.
[55] X. J. Hu, A. A. Padilla, J. Xu, T. S. Fisher and K. E. Goodson, "3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon", Journal of Heat Transfer, Vol. 128, No. 11, 2005, pp. 1109-1113.
[56] D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang and J. Q. Li, "Thermal Conductivity of Multiwalled Carbon Nanotubes", Physical Review B, Vol. 66, 2002, pp. 165440-1~165440-6.
[57] X. L. Shi, H. Yang, G. Q. Shao, X. L. Duan, L. Yan, Z. Xiong, P. Sun, "Fabrication and Properties of W–Cu Alloy Reinforced by Multi-Walled Carbon Nanotubes", Materials Science and Engineering: A, Vol. 457, No. 1-2, 2007, pp. 18-23.
[58] H. C. Choi, M. Shim, S. Bangsaruntip and H. Dai, "Spontaneous Reduction of Metal Ions on the Sidewalls of Carbon Nanotubes", Journal of the American Chemical Society, Vol. 124, No. 31, 2002, pp. 9058-9059.
[59]J. A. King, "Materials Handbook for Hybrid Microelectronics", Artech House, 1988, pp. 405-420.
[60] P. G. Jang, K. S. Suh, M. Park, J. K. Kim, W. N. Kim and H. G. Yoon, "Electrical Behavior of Polyurethane Composites with Acid Treatment-Induced Damage to Multiwalled Carbon Nanotubes", Journal of Applied Polymer Science, Vol. 106, No. 1, 2007, pp. 110-116.
[61] S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis and R. C. Haddon, "Chemistry of Single-Walled Carbon Nanotubes", Accounts of Chemical Research, Vol. 35, No. 12, 2002, pp. 1105-1113.
[62] A. A. Balandin, "Thermal Properties of Graphene and Nanostructured Carbon Materials", Nature Materials, Vol. 10, 2011, pp. 569-581.
[63] H. Zhang, H. Song, X. Chen and J. Zhou, "Enhanced Lithium Ion Storage Property of Sn Nanoparticles: The Confinement Effect of Few-Walled Carbon Nanotubes", The Journal of Physical Chemistry C, Vol. 116, No. 43, 2012, pp. 22774-22779.
[64] J. Zhou, J. Wang, H. Fang and T. K. Sham, "Structural Variation and Water Adsorption Of A SnO2 Coated Carbon Nanotube: A Nanoscale Chemical Imaging Study", Journal of Materials Chemistry, Vol. 21, No. 16, 2011, pp. 5944-5949.
[65] 林倩儀, "表面附著錫/二氧化錫之多層奈米碳管之合成與性質研究", 國立成功大學碩士論文, 民國一百零二年, p. 18.
[66] Y. C. Hong, D. H. Shin, S. C. Cho and H. S. Uhm, "Surface Transformation of Carbon Nanotube Powder into Super-Hydrophobic and Measurement of Wettability", Chemical Physics Letters, Vol. 427, No. 4-6, 2006, pp. 390-393.
[67] E. Durgun, S. Dag, V. M. K. Bagci, O. Gülseren, T. Yildirim and S. Ciraci, "Systematic Study of Adsorption of Single Atoms on A Carbon Nanotube", Physical Review B, Vol. 67, No.20, 2003, pp. 201401-1~201401-4.
[68] E. L. P. Blancá, A. Svane, N. E. Christensen, C. O. Rodríguez, O. M. Cappannini and M. S. Moreno, " Calculated Static and Dynamic Properties of β-Sn and Sn-O Compounds", Physical Review B, Vol. 48, No. 21, 1993, pp. 15712-15718.
[69] S. W. Tsai and H. T. Hahn, "Introduction to Composite Materials", Technomic publishing company, Pennsylvania, 1980, pp. 330-341.
[70] K. Otte, "A Study of the Thermal Properties of Commercially Available Multi-Walled Carbon Nanotubes and Gold Nanowires", Master Thesis of the Faculty of the Graduate School of Vanderbilt University, 2013, pp. 31-39
[71]E. W. Lemmon and R. T. Jacobsen, "Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon and Air", International Journal of Thermophysics, Vol. 25, No. 1, 2004, pp. 21-69.
[72] A. Aitkaliyeva, D. Chen and L. Shao, "Phonon Transport Assisted by Inter-Tube Carbon Displacements in Carbon Nanotube Mats", Scientific Reports, Vol. 3, 2013, pp. 1-5.
[73] J. Che, T. Cagin and W. A. Goddard, "Thermal Conductivity of Carbon Nanotubes", Nanotechnology, Vol. 11, 2000, pp. 65-69.
[74] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, "Superior Thermal Conductivity of Single-Layer Graphene", Nano Letters, Vol. 8, No.3, 2008, pp. 902-907.