| 研究生: | 王昱程 Wang, Yu-Cheng | 
|---|---|
| 論文名稱: | 從水旱田輪作有機土中分離對抗農業常見病原菌的潛在抗病菌株 Isolation of potential disease-resistant bacterial strains against common agricultural pathogens from paddy-upland rotation organic field | 
| 指導教授: | 張文綺 Chang, Wen-Chi | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 生物科學與科技學院 - 熱帶植物與微生物科學研究所 Institute of Tropical Plant Sciences | 
| 論文出版年: | 2023 | 
| 畢業學年度: | 112 | 
| 語文別: | 中文 | 
| 論文頁數: | 69 | 
| 中文關鍵詞: | 植物病原菌 、生物防治劑 、永續農業 | 
| 外文關鍵詞: | phytopathogens, biological agent, sustainable agriculture | 
| 相關次數: | 點閱:33 下載:0 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
在農作物的生長過程中,經常遇到許多壓力逆境,其中生物性的病害造成的農業問題一直以來也是農業災害中的重大問題之一。科學家自從綠色革命以來就以化學農藥抑制植物病原菌的擴散,但近年來也逐漸發現有抗藥性的菌株誕生,顯然化學農藥並不是長久之計,並且化學農藥還有可能負面影響土壤生物多樣性。邁入21世紀,人們逐漸反思該如何與環境共存,最近在許多國家和地區透過改善農業上的法規以及經由科學上的研究努力實踐永續農業的理想。過去本實驗室透過總體基因體學分析長期的農業試驗田,在分析中顯示具有豐富的抑制病原菌的菌株在其土壤中,本篇的研究透過試驗田土壤的採樣挑選出四株具有抑制病原菌能力的菌株,並分別測試了不同溫度、鹽分、酸鹼值對生長的影響了解篩選菌株的最適生長環境。透過定量菌液,此四株菌分別在三種不同培養基與三種在台灣常見的植物病原性真菌(立枯絲核菌、稻熱病菌、徒長病菌¬)進行對峙培養。結果表明代號R1OF 821的菌株對於三種病原菌在不同環境下都擁有良好的抑制效果。接著,我們想要更進一步的探討混合菌株可否產生超過於單一菌株的抑制能力,因此我們將有抑制效果的菌株做混和並進行實驗,結果並沒有超出於原本的單一菌株。透過一系列的實驗,我們進一步的驗證了長期有機試驗田篩選出的菌株具有對抗植物病原菌的能力。未來希望能再進一步的利用盆栽試驗以及田間試驗證明此篩選菌株有助植物抵抗常見的農業病原菌,對永續農業有實質性的貢獻。
Regarding the Green Revolution, although it led to a significant increase in yield in the past, the use of chemical pesticides also caused considerable damage to the land. To improve the land and transition towards sustainable agriculture while promoting sustainable development, the development of biological agents has become a prominent research focus for institutions worldwide. In this study, four strains were isolated from soil in paddy-upland rotation fields where organic fertilizers were applied. These selected strains demonstrated inhibitory effects against three phytopathogens: Rhizoctonia solani, Fusarium moniliforme, and Pyricularia oryzae. Observations on the culture medium revealed distinct fungal hyphae growth patterns near the selected strains compared to their normal growth state in other areas. This suggests that the selected strains might secrete secondary metabolites that inhibit fungal growth. Additionally, certain strains (R1OF 821 and R1OF 822) displayed bacterial swarming behavior, indicating their motility and a significant advantage in competing against phytopathogens. In conclusion, these selected strains exhibited significant resistance to the phytopathogens. We hope that the selected strains can also display excellent antimicrobial effects in both pot and field trials, thus enabling their application in sustainable agriculture.
太田保夫. (1989). 日本之有機農業. 有機農業研討會專集. 
王銀波,趙震慶. (1995). 有機農業之意義及有關試驗之探討. 有機質肥料合理施用技術研討會專刊, 95-109. 
余淑美. (1979). 不同寄主來源Fusarium moniliforme 之生物學比較研究 國立中興大學
林俊義. (2005). 永續農業之理念與發展策略. (特121號)合理化施肥專刊, 1-14. 
Ajayi-Oyetunde, O. O., & Bradley, C. A. (2018). Rhizoctonia solani taxonomy, population biology and management of rhizoctonia seedling disease of soybean Correction(s) for this article. Plant Pathology, 3-17 
Ali, S., Hameed, S., Shahid, M., Iqbal, M., Lazarovits, G., & Imran, A. (2020). Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiological Research, 232, 126389. 
Bach, E. M., Ramirez, K. S., Fraser, T. D., & Wall, D. H. (2020). Soil Biodiversity Integrates Solutions for a Sustainable Future. Sustainability, 12, 2662. 
Bakker, P. A. H. M., Berendsen, R. L., Van Pelt, J. A., Vismans, G., Yu, K., Li, E., Van Bentum, S., Poppeliers, S. W. M., Sanchez Gil, J. J., Zhang, H., Goossens, P., Stringlis, I. A., Song, Y., de Jonge, R., & Pieterse, C. M. J. (2020). The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Molecular Plant, 13(10), 1394-1401. 
Bebber, D. P., & Richards, V. R. (2022). A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Applied Soil Ecology, 175, 104450. 
Behnam, s. s., Ahmadzadeh, M., Tehrani, A., Hedjaroude, G., & Farzaneh, M. (2007). Biological control of Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mold, by Pseudomonas species on canola petals. Communications in agricultural and applied biological sciences, 72, 993-996. 
Bonaterra, A., Badosa, E., Daranas, N., Francés, J., Roselló, G., & Montesinos, E. (2022). Bacteria as Biological Control Agents of Plant Diseases. microorganisms, 10, 1759. 
Brussaard, L., de Ruiter, P. C., & Brown, G. G. (2007). Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment, 121(3), 233-244. 
Chandini, Kumar, R., Kumar, R., & Prakash, O. (2019). The Impact of Chemical Fertilizers on our Environment and Ecosystem. In (pp. 69-86). 
Charlop-Powers, Z., Owen, J. G., Reddy, B. V. B., Ternei, M. A., & Brady, S. F. (2014). Chemical-biogeographic survey of secondary metabolism in soil. Proceedings of the National Academy of Sciences, 111(10), 3757-3762. 
Charlop-Powers, Z., Owen, J. G., Reddy, B. V. B., Ternei, M. A., Guimarães, D. O., de Frias, U. A., Pupo, M. T., Seepe, P., Feng, Z., & Brady, S. F. (2015). Global biogeographic sampling of bacterial secondary metabolism. eLife, 4, e05048. 
Choi, J., Park, S.-Y., Kim, B.-R., Roh, J.-H., Oh, I.-S., Han, S.-S., & Lee, Y.-H. (2013). Comparative Analysis of Pathogenicity and Phylogenetic Relationship in Magnaporthe grisea Species Complex. PLOS ONE, 8(2), e57196. 
Cuartero Moñino, J., Özbolat, O., Sánchez-Navarro, V., Egea-Cortines, M., Zornoza, R., Canfora, L., Orrù, L., Pascual, J., Vivo, J.-M., & Ros, M. (2021). Changes in Bacterial and Fungal Soil Communities in Long-Term Organic Cropping Systems. Agriculture, 11, 445. 
Cuellar-Gaviria, T. Z., González-Jaramillo, L. M., & Villegas-Escobar, V. (2021). Role of Bacillus tequilensis EA-CB0015 cells and lipopeptides in the biological control of black Sigatoka disease. Biological Control, 155, 104523. 
de Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant Growth-Promoting Rhizobacteria for Sustainable Agricultural Production. Microorganisms, 11, 1088. 
de Graaff, M. A., Adkins, J., Kardol, P., & Throop, H. L. (2015). A meta-analysis of soil biodiversity impacts on the carbon cycle. SOIL, 1(1), 257-271. 
G.S. Rattan, K. S. C. S. S. S. (2003). Investigations on sheath blight of rice In Punjab. Indian Phytopathology, 56(1), 22-26. 
Gao, S., Wu, H., Yu, X., Qian, L., & Gao, X. (2016). Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biological Control, 98, 11-17. 
Guzmán-Guzmán, P., Kumar, A., de los Santos-Villalobos, S., Parra-Cota, F. I., Orozco-Mosqueda, M. d. C., Fadiji, A. E., Hyder, S., Babalola, O. O., & Santoyo, G. (2023). Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases—A Review. Plants, 12(3), 432. 
Hou, P.-F., Chien, C.-H., Chiang-Hsieh, Y.-F., Tseng, K.-C., Chow, C.-N., Huang, H.-J., & Chang, W.-C. (2018). Paddy-upland rotation for sustainable agriculture with regards to diverse soil microbial community. scientific reports, 8(1), 7966. 
Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., & Piñeiro, G. (2017). The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annual Review of Ecology, Evolution, and Systematics, 48(1), 419-445. 
Jaiswal, D. K., Gawande, S. J., Soumia, P. S., Krishna, R., Vaishnav, A., & Ade, A. B. (2022). Biocontrol strategies: an eco-smart tool for integrated pest and diseases management. BMC Microbiology, 22(1), 324. 
John, D. A., & Babu, G. R. (2021). Lessons From the Aftermaths of Green Revolution on Food System and Health [Mini Review]. Frontiers in Sustainable Food Systems, 5. 
Kögel, T., & Prskawetz, A. (2001). Agricultural Productivity Growth and Escape from the Malthusian Trap. Journal of Economic Growth, 6(4), 337-357. 
Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy [Review]. Frontiers in Plant Science, 10, 845. 
Kearns, D. B. (2010). A field guide to bacterial swarming motility. Nature Reviews Microbiology, 8(9), 634-644. 
Kumar, P., Dubey, R. C., & Maheshwari, D. K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167(8), 493-499. 
Lankau, R. A., George, I., & Miao, M. (2022). Crop performance is predicted by soil microbial diversity across phylogenetic scales. Ecosphere, 13(5), e4029. 
Liu, E., Yan, C., Mei, X., He, W., So, H. B., Ding, L., Liu, Q., Liu, S., & Fan, T. (2010). Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma. 
Lockeretz, W. (1988). Open questions in sustainable agriculture. American Journal of Alternative Agriculture, 3(4), 174-181. 
Miljaković, D., Marinković, J., & Balešević-Tubić, S. (2020). The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. microorganisms, 8(7), 1037. 
Nelson, P. E. (1992). Taxonomy and biology of Fusarium moniliforme. Mycopathologia, 117(1), 29-36. 
Newman, M.-A., Sundelin, T., Nielsen, J., & Erbs, G. (2013). MAMP (microbe-associated molecular pattern) triggered immunity in plants [Review]. Frontiers in Plant Science, 4, 139. 
Olanrewaju, O. S., Ayangbenro, A. S., Glick, B. R., & Babalola, O. O. (2019). Plant health: feedback effect of root exudates-rhizobiome interactions. Applied Microbiology and Biotechnology, 103(3), 1155-1166. 
Orozco-Mosqueda, M. d. C., Rocha-Granados, M. d. C., Glick, B. R., & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological Research, 208, 25-31. 
Pordel, A., & Javan-Nikkhah, M. (2020). A review on Pyricularia oryzae; biological and taxonomical finding in Iran. Mycologia Iranica, 7(2), 163-170. 
Pordel, A., Ravel, S., Charriat, F., Gladieux, P., Cros-Arteil, S., Milazzo, J., Adreit, H., Javan-Nikkhah, M., Mirzadi-Gohari, A., Moumeni, A., & Tharreau, D. (2020). Tracing the Origin and Evolutionary History of Pyricularia oryzae Infecting Maize and Barnyard Grass. Phytopathology®, 111(1), 128-136. 
Rana, K. L., Kour, D., Kaur, T., Devi, R., Yadav, A. N., Yadav, N., Dhaliwal, H. S., & Saxena, A. K. (2020). Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie van Leeuwenhoek, 113(8), 1075-1107. 
Rossman, A. Y., Howard, R. J., & Valent, B. (1990). Pyricularia grisea, the Correct Name for the Rice Blast Disease Fungus. Mycologia, 82(4), 509-512. 
Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. D., & Glick, B. R. (2021). Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). biology 2021, 10, 475. 
Senapati, M., Tiwari, A., Sharma, N., Chandra, P., Bashyal, B. M., Ellur, R. K., Bhowmick, P. K., Bollinedi, H., Vinod, K. K., Singh, A. K., & Krishnan, S. G. (2022). Rhizoctonia solani Kühn Pathophysiology: Status and Prospects of Sheath Blight Disease Management in Rice [Systematic Review]. Frontiers in Plant Science, 13, 881116. 
Singh, P. P., Shin, Y. C., Park, C. S., & Chung, Y. R. (1999). Biological Control of Fusarium Wilt of Cucumber by Chitinolytic Bacteria. Phytopathology®, 89(1), 92-99. 
Tseng, T.-C., Lee, K.-L., Deng, T.-S., Liu, C.-Y., & Huang, J.-W. (1995). Production of fumonisins by Fusarium species of Taiwan. Mycopathologia, 130:117-121. 
Vacheron, J., Desbrosses, G., Bouffaud, M.-L., Touraine, B., Moënne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dyé, F., & Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning [Review]. Frontiers in Plant Science, 4. 
Velivelli, S. L. S., Kromann, P., Lojan, P., Rojas, M., Franco, J., Suarez, J. P., & Prestwich, B. D. (2015). Identification of mVOCs from Andean Rhizobacteria and Field Evaluation of Bacterial and Mycorrhizal Inoculants on Growth of Potato in its Center of Origin. Microbial Ecology, 69(3), 652-667. 
Wu, L., Jiang, Y., Zhao, F., He, X., Liu, H., & Yu, K. (2020). Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. scientific reports, 10(1), 9568. 
Zerald, T., Parimal, M., Arka Pratim, C., Ayon, P., & Sanjoy, S. (2021). Fusarium Disease of Maize and Its Management through Sustainable Approach. In M. Seyed Mahyar (Ed.), Fusarium (pp. Ch. 5). IntechOpen. 
Zhang, H., Zheng, X., & Zhang, Z. (2016). The Magnaporthe grisea species complex and plant pathogenesis. Molecular Plant Pathology, 17, 796-804. 
Zhou, S., Zhou, Y., Li, C., Wu, W., Xu, Y., Xia, W., Huang, D., & Huang, X. (2023). Identification and genomic analyses of a novel endophytic actinobacterium Streptomyces endophytica sp. nov. with potential for biocontrol of yam anthracnose [Original Research]. Frontiers in Microbiology, 14, 1139456. 
Zou, N., Zhou, D., Chen, Y., Lin, P., Chen, Y., Wang, W., Xie, J., & Wang, M. (2021). A Novel Antifungal Actinomycete Streptomyces sp. Strain H3-2 Effectively Controls Banana Fusarium Wilt [Original Research]. Frontiers in Microbiology, 12, 706647.