簡易檢索 / 詳目顯示

研究生: 盧科妙
Lu, Ke-Miao
論文名稱: 惰性及氧化氣氛下生質物焙燒之特性研究
Investigation of Biomass Torrefaction Characteristics in Inert and Oxidative Atmospheres
指導教授: 林達昌
Lin, Ta-Chang
共同指導教授: 李文智
Lee, Wen-Jhy
陳維新
Chen, Wei-Hsin
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 127
中文關鍵詞: 生質物非氧化焙燒及氧化焙燒焙燒機制惰性及氧化氣氛氣體流率能量與質量共效益指標(EMCI)混合燃料熱重分析(TGA)
外文關鍵詞: Biomass, Non-oxidative torrefaction and oxidative torrefaction, Torrefaction machine, Inert and oxidative atmospheres, Superficial velocities, Energy-mass co-benefit index (EMCI), Fuel blends, Thermogravimetric analysis (TGA)
相關次數: 點閱:111下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 焙燒是一以熱進行生質物前處理之程序,其可使生質物之能源利用效率高於未經前處理之生質物;然而,焙燒需在惰性氣氛下進行,因而增加生質物之前處理成本。倘焙燒可在氧化氣氛或空氣中進行,將可大幅降低前處理成本;另一方面,在焙燒生質物之運用上,尚無焙燒生質物與煤之混合物裂解之相關研究。由此,本研究之主要目的為瞭解不同惰性及氧化氣氛對焙燒之影響;此外,亦將探討焙燒生質物與煤之混合物相關之熱裂解特性。
    本研究進行了三項比較惰性及氧化焙燒之試驗,分別探討於氮氣與空氣、不同氣體流量及不同氧濃度下焙燒,各氣氛對纖維類與木質類生質物造成之影響;除以300 °C焙燒1小時之條件進行試驗外,亦將溫度擴及至250-350°C之範圍內,分析生質物之氧化焙燒特性。此外,為拓展焙燒生質物於實場之應用,針對焙燒生質物與煤混合應用有更深入之瞭解,本研究亦以熱重分析(TGA)進行了不同比例之焙燒生質物與煤之混合物之熱分解特性研究與裂解動力學分析。
    本研究針對評估焙燒生質物之特性,提出一生質物焙燒操作指標─能量與質量共效益指標(EMCI),係由能量產率與產物產率相減求得,焙燒生質物之EMCI愈高,其物理意義為─可在減少較多產物重量之同時,亦可保留住較高之能量。試驗結果顯示,於惰性氣氛中焙燒之生質物,有較高之EMCI,在各種條件下,使用氮氣做為焙燒之攜帶氣體者,其焙燒結果皆較使用含氧氣氛者為佳;而無論在何溫度下以氮氣做為攜帶氣體進行焙燒,氮氣流量並不影響焙燒產物之產率,可知於氮氣氣氛下進行焙燒,其反應機制主要受生質物之受熱與質量傳遞所控制。
    於氧化氣氛中焙燒時,氧流量或氧濃度增加將造成焙燒產物之產率、能量留存率與EMCI降低;然而,在相同溫度下進行氧化焙燒時,生質物之表面氧化仍有一臨界值,當躍過此一值時,再高之氧氣氛將不再影響其焙燒結果。此外,傳統惰性焙燒之產物,其產率與熱值係呈一負向之線性關係;而經由本研究結果發現,氧化焙燒之產物產率與熱值則呈一正向之線性關係,即產率愈高,其熱值亦愈高。
    本研究亦於顯微組織之觀察結果中發現,木質類生質物較纖維類生質物更能抵抗焙燒中氧化氣氛之影響;換言之,纖維類生質物於焙燒時,其受氧濃度之影響較木質類生質物敏感。此外,由EMCI之結果可知,油棕果纖維與椰殼纖維於氧化焙燒時,受氧流量之影響較為敏感;而尤加利木於焙燒時,受氧化氣氛之影響最不敏感,故可推論,生質物之氧化焙燒主要乃由表面氧化所主導。
    生質物與煤碳混燒是生質物應用於工業最常見之方法;而在焙燒生質物與煤之混合物之裂解特性之研究結果中發現,混合物與各單一材料之裂解特性十分接近,因此可推論焙燒生質物與煤共同裂解時,其熱分解之交互作用或協同作用微小;換言之,無論生質物焙燒與否,混合燃料之裂解行為可由生質物與煤各自之重量進行推測。

    Torrefaction is a thermal pretreatment process for solid biomass fuel production. The efficiencies of energy applications of torrefied biomass are higher than those of the parent biomass. However, torrefaction must be processed under inert atmosphere thus has a higher process cost. A reduction in operating cost is achievable if the torrefaction process is carried out in oxidative atmosphere or ambient air. On the other hand, few researches conduct on the co-pyrolysis of torrefied biomass and coal blends; therefore, the goals of this research are to investigate biomass torrefaction in inert and oxidative atmospheres and the thermal degradation characteristics for torrefied biomass and coal blends.
    There are three experiments for inert and oxidative torrefaction including torrefaction in nitrogen and ambient air at various superficial velocities, and different oxygen concentrations for comparing impacts in fibrous and ligneous biomass materials. The temperature and duration for torrefaction are normally controlled below 300 °C and 1 h, respectively. To give a wider insight into the operation of torrefaction, the temperature interval from 250 to 350 °C is included in the experiment. Meanwhile, to understand the applications of torrefied biomass with coal blends, another objective of this study is to investigate the thermal degradation characteristics and pyrolysis kinetics of raw/torrefied biomass and coal blends via thermogravimetric analysis (TGA).
    Energy-mass co-benefit index (EMCI), which is the difference of the energy yield minus the solid yield, is proposed for seeking the optimum operation. The results suggest that the non-oxidative torrefaction always gives the highest EMCI, regardless of which biomass is torrefied; that is, the performance of biomass torrefied in nitrogen is better than in an oxidative atmosphere. Moreover, at a given temperature, the solid yield of biomass is not affected by the superficial velocity of nitrogen. The results suggest that reaction is controlled by heat and mass transfer in biomass when it is torrefied in nitrogen.
    For biomass torrefied in oxidative atmosphere, increasing oxygen superficial velocity and concentration will decrease the solid yield, energy yield and EMCI; that is, an increase in oxygen superficial velocity and concentration deteriorates the torrefaction performance. However, at the fixed temperature, there is a threshold value for surface oxidation induced by air supply. Once passing over the threshold, oxygen no longer affects result of torrefaction. A linear relationship between the solid yield and the calorific value was found. In non-oxidative torrefaction, the higher heating value (HHV) of a material is linearly proportional to mass loss, implying that a decrease in solid yield increases the HHV of biomass. In contrast, increasing oxidative torrefaction severity decreases the solid yield where the energy yield decreases with decreasing solid yield.
    Scanning electron microscope (SEM) observations indicate that ligneous biomass has a higher resistance against oxidative torrefaction than fibrous biomass. In other words, the fibrous biomass is more sensitive to oxygen concentration than ligneous biomass. The distributions of EMCI indicate that oil palm fiber and coconut fiber are more sensitive to oxygen superficial velocity and concentration, whereas eucalyptus is the least sensitive to the oxidative atmosphere. The latter implies that the oxidative torrefaction of eucalyptus is dominated by surface oxidation.
    The pyrolysis characteristics of the mixtures for biomass and coal are very close to the combination of those of the individual materials. It is thus concluded that the interaction or synergistic effect between raw/torrefied biomass and coal is weak. That is, the pyrolysis behavior of fuel blends can be determined in terms of the weight percentages of biomass and coal, regardless of the torrefaction of biomass.

    Acknowledgments (致謝)I 中文摘要 III Abstract V Contents VIII List of tables XI List of figures XIII Chapter 1. Introduction 1 1.1 Background 1 1.2 Objective 3 1.3 Overview 5 Chapter 2. Literature review 6 2.1 Biomass and bioenergy 6 2.1.1 Potential of biomass 7 2.1.2 Components of biomass 9 2.1.3 Characteristics of biomass 10 2.2 Torrefaction and applications of torrefied biomass 11 2.2.1 Principles of torrefaction 11 2.2.2 Characteristics of torrefied biomass 15 2.2.3 Applications of torrefied biomass 19 2.3 Oxidative torrefaction 20 2.3.1 Oxidative torrefaction mechanism 20 2.3.2 Characteristics of oxidative torrefaction 22 Chapter 3. Methodology 23 3.1 Study design 23 3.2 Methodology for non-oxidative and oxidative torrefaction 25 3.2.1 Materials for non-oxidative and oxidative torrefaction 25 3.2.2 Experimental setup for non-oxidative and oxidative torrefaction 27 3.2.3 Experimental procedure for non-oxidative and oxidative torrefaction 29 3.2.4 Sample analysis for non-oxidative and oxidative torrefaction 32 3.3 Methodology for co-pyrolyses of raw/torrefied biomass and coal blends 34 3.3.1 Material of biomass and coal 34 3.3.2 Experimental setup for biomass torrefaction 35 3.3.3 Experimental procedure for co-pyrolyses of raw/torrefied biomass and coal blends 36 3.3.4 Pyrolysis kinetics 39 Chapter 4. Results and discussion 42 4.1 Biomass torrefaction in nitrogen and air 42 4.1.1 Elemental and proximate analysis of torrefied biomass in nitrogen and air 42 4.1.2 Solid yield, HHV and energy yield of torrefied biomass in nitrogen and air 49 4.1.3 EMCI of torrefied biomass in nitrogen and air 54 4.2 Biomass torrefaction at various air superficial velocities 56 4.2.1 Effect of carrier gas superficial velocity 56 4.2.2 Elemental and proximate analysis of torrefied biomass at various air superficial velocities 58 4.2.3 Solid yield, HHV and energy yield of torrefied biomass at various air superficial velocities 64 4.2.4 EMCI of torrefied biomass at various air superficial velocities 69 4.3 Biomass torrefaction at various oxygen concentrations 71 4.3.1 Elemental and proximate analysis of torrefied biomass at various oxygen concentrations 71 4.3.2 Solid yield, HHV and energy yield of torrefied biomass at various oxygen concentrations 77 4.3.3 EMCI and other operating index of torrefied biomass at various oxygen concentrations 79 4.3.4 Prediction of HHV of torrefied biomass at various oxygen concentrations 82 4.3.5 SEM observation of torrefied biomass at various oxygen concentrations 84 4.3.6 The role played by oxygen superficial velocity on the torrefied biomass 90 4.4 Co-pyrolysis of torrefied biomass and coal blend 93 4.4.1 Properties of raw/torrefied wood and coal 93 4.4.2 Pyrolyses characteristics of materials 95 4.4.3 Pyrolyses characteristics of blends 98 4.4.4 Interaction of biomass and coal 102 4.4.5 Pyrolysis kinetics 107 Chapter 5. Conclusions and suggestions 110 5.1 Conclusions 110 5.2 Suggestions 111 References 112 Resume (自述) 123

    Acharjee, T.C., Coronella, C.J., Vasquez, V.R. 2011. Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresour. Technol. 102, 4849-4854.
    Almeida, G., Brito, J.O., Perr´e, P. 2010. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: The potential of mass loss as a synthetic indicator. Bioresour. Technol. 101, 9778-9784.
    Arias, B., Pevida, C., Fermoso, J., Plaza, M.G., Rubiera, F., Pis, J.J. 2008. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 89, 169-175.
    ASTM Standard. 2007. A Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM International, West Conshohocken D5865.
    Bergman, P.C.A, Boersma, A.R., Kiel, J.H.A., Zwart, R.W.H. 2005a. Development of torrefaction for biomass co-firing in existing coal-fired power stations. Energy Research Centre of the Netherlands (ECN) Report, BIOCOAL concept version.
    Bergman, P.C.A, Boersma, A.R., Zwart, R.W.H., Kiel, J.H.A. 2005b. Torrefaction for biomass co-firing in existing coal-fired power stations. Energy Research Centre of the Netherlands (ECN) Report, ECN-C-05-013.
    Biagnini, E., Lippi, F., Petarca, L., Tiognotti, L. 2002. Devolatilization rate of biomasses and coal-biomass blends: an experimental investigation. Fuel 81, 1041-1050.
    Bracelpa. 2007. Relatório estatístico florestal. Associação Brasileira de Celulose e Papel.
    Bridgeman, T.G., Jones, J.M., Shield, I., Williams, P.T. 2008. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87, 844-856.
    Bridgeman, T.G., Jones, J.M., Williams, A., Waldron, D. 2010. An investigation of the grindability of two torrefied energy crops. Fuel 89, 3911-3918.
    Broström, M., Nordin, A., Pommer, L., Branca, C., Blasi, C. D. 2012. Influence of torrefaction on the devolatilization and oxidation kinetics of wood. J. Anal. Appl. Pyrol. 96, 100-109.
    Channiwala, S.A, Parikh, P.P. 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81, 1051-1063.
    Chen, Q., Zhou, J.S., Liu, B.J., Mei, Q.F., Luo, Z.Y. 2011a. Influence of torrefaction pretreatment on biomass gasification technology. Chinese Sci. Bull. 56, 1449-1456.
    Chen, W.H., Cheng, W.Y., Lu, K.M., Huang, Y.P. 2011b. An evaluation on improvement of pulverized biomass property for solid fuelthrough torrefaction. Appl. Energy 88, 3636-3644.
    Chen, W.H., Du, S.W., Tsai, C.H., Wang, Z.Y., 2012a. Torrefied biomasses in a drop tube furnace to evaluate their utility in blast furnaces. Bioresour. Technol. 111, 433-438.
    Chen, W.H., Hsu, H.C., Lu, K.M., Lee, W.J., Lin, T.C. 2011c. Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy 36, 3012-3021.
    Chen, W.H., Kuo, P.C. 2010. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35, 2580-2586.
    Chen, W.H., Kuo, P.C. 2011a. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36, 803-811.
    Chen, W.H., Kuo, P.C. 2011b. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 36, 6451-6460.
    Chen, W.H., Lu, K.M., Tsai, C.M. 2012b. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl. Energy 100, 318-325.
    Chen, W.H., Tu, Y.J., Sheng, H.K. 2010. Impact of dilute acid pretreatment on the structure of bagasse for producing bioethanol. Int. J. Energy Res. 34, 265-274.
    Chen, W.H., Tu, Y.J., Sheen, H.K. 2011d. Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl. Energy 88, 2726-2734.
    Chen, W.H., Wu, J.S. 2009. An evaluation on rice husks and pulverized coal blends using a drop tube furnace and a thermogravimetric analyzer for application to a blast furnace. Energy 34, 1458-1466.
    Chen, W.H., Ye, S.C., Sheen, H.K. 2012c. Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl. Energy 93, 237-244.
    Chew, J.J., Doshi, V. 2011. Recent advances in biomass pretreatment-torrefaction fundamentals and technology. Renew. Sust. Energ. Rev. 15, 4212-4222.
    Chiang, K.Y., Chien, K.L., Lu, C.H. 2012. Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy. Appl. Energy 100, 164-171.
    Chouchene, A., Jeguirim, M., Khiari, B., Zagrouba, F., Trouvé, G. 2010. Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration. Resources, Conservation and Re. 54, 271-277.
    Coats, A.V., Redfern, J.P. 1964. Kinetic parameters from thermogravimetric data. Nature 201, 68-69.
    Couhert, C., Salvador, S., Commandr´e, J.M. 2006. Impact of torrefaction on syngas production from wood. Fuel 88, 2286-2290.
    Dai, J., Sokhansanj, S., Grace, J.R., Bi, X., Lim, C.J., Melin, S. 2008. Overview and some issues related to co-firing biomass and coal. The Canadian J. Chem. Eng. 86, 367-386.
    Deng, J., Wang, G.J., Kuang, J.H., Zhang, Y.L., Luo, Y.H. 2009. Pretreatment of agricultural residues for co-gasification via torrefaction. J. Anal. Appl. Pyrol. 86, 331-337.
    Duncan, A., Pollard, A., Fellouah, H. 2013. Torrefied, spherical biomass pellets through the use of experimental design. Appl. Energy 101, 237-243.
    Fang, M.X., Shen, D.K., Li, Y.X., Yu, C.J., Luo, Z.Y., Cen, K.F. 2006. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. J. Anal. Appl. Pyrol. 77, 22-27.
    Ghetti, P., Ricca, L., Angelini, L. 1996. Thermal analysis of biomass and corresponding pyrolysis products. Fuel 75, 565-573.
    Goyal, H.B., Seal, D., Saxena, R.C. 2008. Bio-fuels from thermochemical conversion of renewable resources: A review. Renew. Sust. Energ. Rev. 12, 504-517.
    Guo, J., Lua, A.C. 2001. Kinetic study on pyrolytic process of oil palm solid waste using two step consecutive reaction model. Biomass Bioenergy 20, 223-233.
    Hamelinck, C. N., Faaij, A. P.C., Uil, H. D., Boerrigter, H. 2004. Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential. Energy 29, 1743-1771.
    Haykiri-Acma, H., Yaman, S. 2010. Interaction between biomass and different rank coals during co-pyrolysis. Renew. Energy 35, 288-292.
    Huang, Y.F., Chen, W.R., Chiueh, P.T., Kuan, W.H., Lo, S.L. 2012. Microwave torrefaction of rice straw and pennisetum. Bioresour. Technol. 123, 1-7.
    Idris, S.S., Rahman, N.A., Ismail, K., Alias, A.B., Rashid, Z.A., Aris, M.J. 2010. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour. Technol. 101, 4584-4592.
    International Energy Agency. 2011. World Energy Outlook.
    Kakaras, E., Doukelis, A., Giannakopoulos, D., Koumanakos, A. 2007. Economic implications of oxyfuel application in a lignite-fired power plant. Fuel 86, 2151-2158.
    Kastanaki, E., Vamvuka, D., Grammelis, P., Kakaras, E. 2002. Thermogravimetric studies of the behavior of lignite–biomass blends during devolatilization. Fuel Process. Technol. 77-78, 159-166.
    Lee, J.W., Kim, Y.H., Lee, S.M., Lee, H.W. 2012. Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density. Bioresour. Technol. 116, 471-476.
    Lester, E., Gong, M., Thompson, A. 2007. A method for source apportionment in biomass/coal blends using thermogravimetric analysis. J. Anal. Appl. Pyrolysis 80, 111-117.
    Li, H., Liu, X., Legros, R., Bi, X. T., Lim, C.J., Sokhansanj, S. 2012a. Torrefaction of sawdust in a fluidized bed reactor. Bioresour. Technol. 103, 453-458.
    Li, H., Liu, X., Legros, R., Bi, X.T., Lim, C.J., Sokhansanj, S. 2012b. Pelletization of torrefied sawdust and properties of torrefied pellets. Appl. Energy 93, 680-685.
    Li, J., Brzdekiewicz, A., Yang, W., Blasiak, W. 2012c. Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching. Appl. Energy 99, 344-354.
    Lin, Y.J., Hwang, G.S. 2009. Charcoal from biomass residues of a Cryptomeria plantation and analysis of its carbon fixation benefit in Taiwan. Biomass Bioenergy 33, 1289-1294.
    Liu, D.C., Zhang, C.L., Mi, B., Shen, B.K., Feng, B. 2002. Reduction of N2O and NO emissions by co-combustion of coal and biomass. J. Inst. Energy 75, 81-84.
    Liu, S.H., Lu, K.M., Chen, W.H. 2012. Investigation of biomass torrefaction characteristics in various atmospheres. Iron and Steel Research and Development Department, China Steel Corporation (CSC) Report, 101T1F-RS001.
    Luangkiattikhun, P., Tangsathitkulchai, C., Tangsathitkulchai, M. 2008. Non-isothermal thermogravimetric analysis of oil-palm solid wastes. Bioresour. Technol. 99, 986-997.
    Lynam, J.G., Coronella, C.J., Yan, W., Reza, M.T., Va´squez, V.R. 2011. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresour. Technol. 102, 6192-6199.
    Ma, Y., Li, S. 2012. The pyrolysis, extraction and kinetics of Buton oil sand bitumen. Fuel Process. Technol. 100, 11-15.
    McLendon, T.R., Lui, A.P., Pineault, R.L., Beer, S.K., Richardson, S.W. 2004. High-pressure co-gasification of coal and biomass in a fluidized bed. Biomass Bioenergy 6, 377-388.
    Meesri, C., Moghtaderi, B. 2002. Lack of synergistic effects in the pyrolytic characteristics of woody biomass/coal blends under low and high heating rate regimes. Biomass Bioenergy 23, 55-66.
    Meng, J., Park, J., Tilotta, D., Park, S. 2012. The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil. Bioresour. Technol. 111, 439-446.
    Moghtaderi, B. 2001. The safety implication of low heating rate pyrolysis of coal/biomass blends in pulverised fuel boilers. J. Loss Prev. Process Ind. 14, 161-165.
    Moghtaderi, B., Meesri, C., Wall, T.F. 2004. Pyrolytic characteristics of blended coal and woody biomass. Fuel 83, 745-750.
    Munir, S., Daood, S.S., Nimmo, W., Cunliffe, A.M., Gibbs, B.M. 2009. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour. Technol. 100, 1413-1418.
    Ohliger A., Förster M., Kneer R. 2013. Torrefaction of beechwood: A parametric study including heat of reaction and Grindability. Fuel 104, 607-613.
    Pan, Y.G., Velo, E., Puigjaner, L. 1996. Pyrolysis of a blend of biomass with poor coals. Fuel 75, 412-418.
    Pan, Y.G., Velo, E., Roca, X., Manya, J.J., Puigjaner, L. 2000. Fluidized-bed co-gasification of residual biomass/poor coal blends for fuel gas production. Fuel 79, 1317-1326.
    Parikh, J., Channiwala, S.A., Ghosal, G.H. 2005. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 84, 487-494.
    Phanphanich, M., Mani, S. 2011. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 102, 1246-1253.
    Pimchuai, A., Dutta, A., Basu P. 2010. Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels 24, 4638-4645.
    Poletto, M., Dettenborn, J., Pistor, V., Zeni, M., Zattera, A.J. 2010. Materials produced from plant biomass. Part I: Evaluation of thermal stability and pyrolysis of wood. Mater. Res.-Ibero-Am. J. Mater. 13 (3), 375-379.
    Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G. 2006a. More efficient biomass gasification via torrefaction. Energy 31, 3458-3470.
    Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G. 2006b. Torrefaction of wood Part 1. Weight loss kinetics. J. Anal. Appl. Pyrol. 77, 28-34.
    Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G. 2006c. Torrefaction of wood Part 2. Analysis of products. J. Anal. Appl. Pyrol. 77, 35-40.
    Repellin, V., Govin, A., Rolland, M., Guyonnet, R. 2010. Energy requirement for fine grinding of torrefied wood. Bioresour. Technol. 34, 923-930.
    Rousset, P., Aguiar, C., Labbé, N., Commandré, J.M. 2011. Enhancing the combustible properties of bamboo by torrefaction. Bioresour. Technol. 102, 8225-8231.
    Rousset, P., Macedo, L., Commandré, J.M., Moreira, A. 2012a. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J. Anal. Appl. Pyrol. 96, 86-91.
    Rousset, P., Petithuguenin, T., Rodrigues, T., Azevedo, A.C. 2012b. The fluidization behaviour of torrefied biomass in a cold model. Fuel 102, 256-263.
    Sait, H.H., Hussain, A., Salema, A.A., Ani, F.N. 2012. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour. Technol. 118, 382-389.
    Sami, M, Annamalai, K, Wooldridge, M. 2001. Co-firing of coal and biomass fuel blends. Prog. Energy Combust. Sci. 27, 171-214.
    Saravanakumar A., Haridasan T.M., Reed T. B., Bai R. K. 2007. Experimental investigation and modelling study of long stick wood gasification in a top lit updraft fixed bed gasifier. Fuel 86, 2846-2856.
    Seo, M.W., Goo, J.H., Kim, S.D., Lee, S.H., Choi, Y.C. 2010. Gasification characteristics of coal/biomass blend in a dual circulating fluidized bed reactor. Energy Fuels 24, 3108-3118.
    Sierra, R., Smith, A., Granda, C., Holtzapple, M.T. 2008. Producing fuels and chemicals from lignocellulosic biomass. Chemical Engineering Progress, S10-S18.
    Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J. 2011. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenergy 35, 3748-3762.
    Suzana, Y., Mohamad, T.A., Uemura, Y., Anita, R., Lukman, I., Shuit, S.H. 2009. Review on agricultural biomass utilization as energy source in Malaysia. In Proceedings of the 16th ASEAN regional symposium on chemical engineering, Manila; Philippines. 86-99.
    Tapasvi, D., Khalil, R., Skreiberg, Ø., Tran, K.Q., Grønli, M. 2012. Torrefaction of Norwegian Birch and Spruce: An Experimental Study Using Macro-TGA. Energy Fuels 26, 5232-5240.
    Tumuluru, J.S., Sokhansanj, S., Hess, J.R., Wright, C.T, Boardman, R.D. 2011. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 7, 384-401.
    Uemura, Y., Omar, W., Othman, N.A., Yusup, S., Tsutsui T. 2013. Torrefaction of oil palm EFB in the presence of oxygen. Fuel 103, 156-160.
    Uemura, Y., Omar, W.N., Tsutsui, T., Yusup, S.B. 2011. Torrefaction of oil palm wastes. Fuel 90, 2585-2591.
    Uslu, A., Faaij, A.P.C., Bergman, P.C.A. 2008. Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 33, 1206- 1223.
    Vuthaluru, H.B. 2003. Thermal behaviour of coal/biomass blends during co-pyrolysis. Fuel Process. Technol. 85, 141-155.
    Vuthaluru, H.B. 2004. Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis. Bioresour. Technol. 92, 187-195.
    Wang, C., Peng, J., Li, H., Bi, X. T., Legros, R., Lim, C.J., Sokhansanj, S. 2013. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets Bioresour. Technol. 127, 318-325.
    Wannapeera, J., Fungtammasan, B., Worasuwannarak, N. 2011. Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. J. Anal. Appl. Pyrol. 92, 99-105.
    Wannapeera, J., Worasuwannarak, N. 2012. Upgrading of woody biomass by torrefaction under pressure. J. Anal. Appl. Pyrol. 96, 173-180.
    Wongsiriamnuay, T., Tippayawong, N. 2010. Thermogravimetric analysis of giant sensitive plants under air atmosphere. Bioresour. Technol. 101, 9314-9320.
    Wu, K.T., Tsai, C.J., Chen, C.S., Chen, H.W. 2012. The characteristics of torrefied microalgae. Appl. Energy 100, 52-57.
    Yaman, S. 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conv. Manag. 45, 651-671.
    Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86, 1781-1788.
    Yan, W., Acharjee, T.C., Coronella, C.J., Vásquez, V.R. 2009. Thermal pretreatment of lignocellulosic biomass. Environ. Prog. Sustain. Energy 28, 435-439.
    Yin, C.Y. 2011. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90, 1128-1132.
    Zhang, L., Xu, S., Zhao, W., Liu, S. 2007. Co-pyrolysis of biomass and coal in a free fall reactor. Fuel 86, 353-359.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE