| 研究生: |
李淑秋 Lee, Shwu-Chiou |
|---|---|
| 論文名稱: |
時效性零擔貨物運輸業營收管理之研究 Revenue management for time-definite less-than-truckload freight services |
| 指導教授: |
林正章
Lin, Cheng-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 定價 、軸輻式網路 、拉式鬆弛法 、隱約式窮舉法 |
| 外文關鍵詞: | Pricing, Hub-and-spoke network, Lagrangian Relaxation, Implicit enumeration |
| 相關次數: | 點閱:192 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於貨主期望在同一行政區域有相同的服務水準下,支付相同的運價。因此,運送業者在相同行政區域集合幾個營業所而劃成一個分區,運送業者也對不同分區而劃分不同的費率。分區定價是一種戰略的決策,不僅需決定該區域的價格和經營能力,且同時滿足預期的服務水平和營運要求的戰略計劃,以達運送業者利潤最大化。
本研究乃依節線的規劃所建構,形成整數凹函數規劃(integer concave program),利用準確演算法(exact algorithm)是對嵌入凹函數規劃之子問題的路徑採取隱約式窮舉法,以計算出運送業者最佳的定價,其中子問題是由Frank-Wolfe演算法求解,其演算法的概念是在尋找最佳化的同時保有可行性,使用拉式鬆弛法(Lagrangian Relaxation),來改善計算效率。以確定最佳的價格和營運計劃。採用台灣最大的時效性零擔貨物運輸業者的資料,利用本研究的數學模型和計算結果,在滿足貨主的期望下,證明了分區定價對運送業者的整體利潤有負面影響。
另有關業者營收管理部分,本研究進一步假設,重新設置不同中繼站的營運網路時,可發現:若以設置3個候選中繼站為例,則以開設「五股」及「永康」為最佳方案。若以設置4個候選中繼站及5個候選中繼站時,均以開設「五股」及「嘉義」為最佳方案。其中若設置4個/5個候選中繼站的網路,以開設「五股」及「嘉義」等兩個中繼站的所獲得的利潤相較於設置3個候選中繼站以開設「五股」及「永康」等兩個中繼站可多獲得約1.5倍的利潤。
業者對於中繼站的設置多寡與區位選擇的策略十分重要,攸關著公司的獲利情況,所以對於業者運價的訂定,影響著貨物需求,故業者在營收管理方面,更應加以重視與審慎評估。
Zone pricing is a tactical decision that simultaneously determines the zone prices and an operational plan to use its operating capacity to maximize carrier’s profit while meeting the expected service level and operational requirements. We modeled this integral-constrained concave program using link formulation and proposed an implicit enumeration embedded with Lagrangian relaxation upper bounds to determine the optimal prices and operations plan. To meet the shippers’ expectation, we proved our model mathematically and demonstrated computationally, using Taiwan’s largest time-definite LTL freight carrier, that zone pricing has a negative impact on carrier profit in the process of aggregation.
If the operation network is designed to be 3 hubs model, the best alternative is to open the hubs of Wugu and Yongkang. If the operation network is designed to be 4 or 5 hubs model, the best alternative is to open the hubs of Wugu and Chiayi. The 4 or 5 hubs model will get more profit to 1.5 times than 3 hubs model.
一、中文部分
1.交通部,100年交通年鑑。
2.交通部公路總局,97年1月及12月份統計速報,民國97年。
3.交通部公路總局,98年1月及12月份統計速報,民國98年。
4.交通部公路總局,99年1月及12月份統計速報,民國99年。
5.交通部公路總局,100年1月及12月份統計速報,民國100年。
6.交通部,交通統計月報,臺灣地區公路汽車貨運業營運概況,2010年。
7.林正章,“路線貨運業單一路線限制之貨物排程規劃問題”,運輸計劃季刊,29(1),1-32頁,民國89年。
8.林正章、黃冠翔, “懲罰函數法應用於即時性貨物排程問題之研究”,運輸計劃季刊,28(3),421-450頁,民國88年。
9.林正章、吳俊霖,“路線貨運業內部營運規劃之研究”,運輸計劃季刊,31(4) , 739-763,民國91年。
二、英文部分
1. 22nd Annual State of Logistics Report, CSCMP, 2011.
2. Alumur, S. A., Yaman, H., & Kara, B. Y. (2012). Hierarchical multimodal hub location problem with time-definite deliveries. Transportation Research Part E: Logistics and Transportation Review, 48(6), 1107-1120.
3. Armacost, A. P., Barnhart, C., & Ware, K. A. (2002). Composite variable formulations for express shipment service network design. Transportation science, 36(1), 1-20.
4. Avella, P., Sassano, A., & Vasilev, I. (2007). Computational study of large-scale p-median problems. Mathematical Programming, 109, 89–114.
5. Barnhart, C., & Schneur, R. R. (1996). Air network design for express shipment service. Operations Research, 44(6), 852-863.
6. Bartodziej, P., Derigs, U., & Zils, M. (2007). O&D revenue management in cargo airlines—a mathematical programming approach. Or Spectrum, 29(1), 105-121.
7. Berman, O., & Drezner, Z. (2008).The p-median problem under uncertainty, European Journal of Operational Research ,189,19-30.
8. Bonsall, P., Shires, J., Maule, J., Matthews, B., & Beale, J. (2007). Responses to complex pricing signals: Theory, evidence and implications for road pricing. Transportation Research Part A: Policy and Practice, 41(7), 672-683.
9. Bryan, D. L., & O'Kelly, M. E. (1999). Hub‐and‐spoke networks in air transportation: an analytical review. Journal of regional science, 39(2), 275-295.
10. Campbell, J. F. (1994). Integer programming formulations of discrete hub location problems. European Journal of Operational Research, 72(2), 387-405.
11. Campbell, J. F. (2009). Hub location for time definite transportation. Computers & Operations Research, 36(12), 3107-3116.
12. Chen, S., Gallego, G., Li, M. Z., & Lin, B. (2010). Optimal seat allocation for two-flight problems with a flexible demand segment. European Journal of Operational Research, 201(3), 897-908.
13. Chestler, L. (1985). Overnight Air Express: Spatial Pattern, Competition and the Future in Small Package Delivery Service. Transportation Quarterly, 39(1).
14. Church, R. L. (2008). BEAMR: An exact and approximate model for the p-median problem. Computers & Operations Research, 35(2), 417-426.
15. Church, R. L., & ReVelle, C. S. (1976). Theoretical and Computational Links between the p‐Median, Location Set‐covering, and the Maximal Covering Location Problem. Geographical Analysis, 8(4), 406-415.
16. Crevier, B., Cordeau, J. F., & Savard, G. (2012). Integrated operations planning and revenue management for rail freight transportation. Transportation Research Part B: Methodological, 46(1), 100-119.
17. Current, J. R., ReVelle, C. S., & Cohon, J. L. (1986). The hierarchical network design problem. European Journal of Operational Research, 27(1), 57-66.
18. Current, J. R. (1988). The design of a hierarchical transportation network with transshipment facilities. Transportation Science, 22(4), 270-277.
19. Contreras, I., Díaz, J. A., & Fernández, E. (2011). Branch and price for large-scale capacitated hub location problems with single assignment. INFORMS Journal on Computing, 23(1), 41-55.
20. Daskin, M. S., Schofer, J. L., & Haghani, A. E. (1988). A quadratic programming model for designing and evaluating distance-based and zone fares for urban transit. Transportation Research Part B: Methodological, 22(1), 25-44.
21. De Oliveira, G. F. (2014). Determinants of European freight rates: The role of market power and trade imbalance. Transportation Research Part E: Logistics and Transportation Review, 62, 23-33.
22. Ebery, J., Krishnamoorthy, M., Ernst, A., & Boland, N. (2000). The capacitated multiple allocation hub location problem: Formulations and algorithms. European Journal of Operational Research, 120(3), 614-631.
23. Eckstein, J., & Sheffi, Y. (1987). Optimization of group line-haul operations for motor carriers using twin trailers. Transportation Research Record, (1120), 12-23.
24. Ernst, A. T., & Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location science, 4(3), 139-154.
25. Ernst, A. T., & Krishnamoorthy, M. (1998). An exact solution approach based on shortest-paths for p-hub median problems. INFORMS Journal on Computing, 10(2), 149-162.
26. Grove, Peter G. and Morton E. O'Kelly.(1986) ”Hub Networks and Simulated Schedule Delay” Papers of the Regional Science Association,59,103-119.
27. Groothedde, B., Ruijgrok, C., & Tavasszy, L. (2005). Towards collaborative, intermodal hub networks: a case study in the fast moving consumer goods market. Transportation Research Part E: Logistics and Transportation Review, 41(6), 567-583.
28. Grünert, T., & Sebastian, H. J. (2000). Planning models for long-haul operations of postal and express shipment companies. European Journal of Operational Research, 122(2), 289-309.
29. Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations research, 12(3), 450-459.
30. Hall, R. W. (1989). Configuration of an overnight package air network. Transportation Research Part A: General, 23(2), 139-149.
31. Hansen, P., Peeters, D., & Thisse, J. F. (1997). Facility location under zone pricing. Journal of Regional Science, 37(1), 1-22.
32. Hensher, D. A. (1998). Establishing a fare elasticity regime for urban passenger transport. Journal of Transport Economics and Policy, 221-246.
33. Held, M., Wolfe, P., & Crowder, H. P. (1974). Validation of subgradient optimization. Mathematical programming, 6(1), 62-88.
34. Jansson, K., & Angell, T. (2012). Is it possible to achieve both a simple and efficient public transport zone fare structure? Case study Oslo. Transport Policy, 20, 150-161.
35. Kratica, J., Stanimirović, Z., Tošić, D., & Filipović, V. (2007). Two genetic algorithms for solving the uncapacitated single allocation p-hub median problem. European Journal of Operational Research, 182(1), 15-28.
36. Kuby, M. J., & Gray, R. G. (1993). The hub network design problem with stopovers and feeders: The case of Federal Express. Transportation Research Part A: Policy and Practice, 27(1), 1-12.
37. Leung, J.M., T.L. Magnanti, & Singhal, V. (1990). Routing in point-to-point delivery systems: formulations and solution heuristics. Transportation Science ,24 (4), 245–260.
38. Lin, C. C. (2001a). The freight routing problem of time-definite freight delivery common carriers. Transportation Research Part B: Methodological, 35(6), 525-547.
39. Lin, C.C. ( 2001b). The feeder fleet planning problem of the same-day ground express service in Taiwan. Asia-Pacific Journal of Operational Research, 18,165-191.
40. Lin, C. C., & Chen, S. H. (2008). An integral constrained generalized hub-and-spoke network design problem. Transportation Research Part E: Logistics and Transportation Review, 44(6), 986-1003.
41. Lin, C.C., & Lin, D.Y. (2001). The feeder scheduling problem for time-definite ground delivery common carriers. Journal of Eastern Asia Society for Transportation Studies, 4 (4), 259–369.
42. Lin, C.-C., Lin, Y.-J. & Lin, D.-Y. (2003). The economic effects of center-to-center directs on hub-and-spoke networks for air express common carriers. . Journal of Air Transport Management , 9(4), 255-265.
43. Lin, C. C., Lin, D. Y., & Young, M. M. (2009). Price planning for time-definite less-than-truckload freight services. Transportation Research Part E: Logistics and Transportation Review, 45(4), 525-537.
44. Maddah, B., Moussawi-Haidar, L., El-Taha, M., & Rida, H. (2010). Dynamic cruise ship revenue management. European Journal of Operational Research, 207(1), 445-455.
45. Marı́n, A., Canovas, L., & Landete, M. (2006). New formulations for the uncapacitated multiple allocation hub location problem. European Journal of Operational Research, 172(1), 274-292.
46. McGill, J. I., & Van Ryzin, G. J. (1999). Revenue management: Research overview and prospects. Transportation science, 33(2), 233-256.
47. O'Kelly, M. E. (1986). The Location of Interacting Hub Facilities. Transportation Science, 20(2),92-105.
48. O'Kelly, M.E. (1987).A quadratic integer program for the location of interacting hub facilities. European Journal of Operational Research, 32, 393-404.
49. O’Kelly, M. E., & Bryan, D.L.(2002). Interfacility interaction in models of hub and spook networks. Journal of Regional Science, 42(1), 145-164.
50. Owen, S. H., & Daskin, M. S. (1998). Strategic facility location: A review. European Journal of Operational Research, 111(3), 423-447.
51. Peeters, Dominique, & Thisse, J.F.(1996). Zone Pricing. Journal of Regional Science, 36, 81-91.
52. Powell, W. B., & Sheffi, Y. (1989). OR Practice—Design and Implementation of an Interactive Optimization System for Network Design in the Motor Carrier Industry. Operations Research, 37(1), 12-29.
53. Rose, J.M., & Bliemer, M.C. (2005). Sample Optimality in the Design of Stated Choice Experiments, Working Paper: ITLS-WP-05-13.
54. Skorin-Kapov, D., Skorin-Kapov, J., & O’Kelly, M.E. (1996). Tight linear programming relaxations of uncapacitated p-hub median problems. European Journal of Operational Research ,94 (3), 582–593.
55. Subramanian, J., Stidham, S., & Lautenbacker, A.C.(1999). Airline yield management with overbooking, cancellations and no-shows. Transportation Science, 33,147–167.
56. Suter, M. J., Nuggehalli, R.S., & Zaret, D.R. (1996). Feeder schedules optimization system. Presented at the INFORMS Atlanta Fall Conference. Atlanta, USA.
57. Toptal, A., & Bingöl, S. O. (2011). Transportation pricing of a truckload carrier. European Journal of Operational Research, 214(3), 559-567.
58. Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations Research, 19(6), 1363-1373.
59. Wardman, M., & Toner, J. (2003). Econometric modeling of competition between train ticket types. In: Proceedings of the European Transport Conference, London, UK, 8–10.
60. Yang, C. W., & Chang, C. C. (2011). Applying price and time differentiation to modeling cabin choice in high-speed rail. Transportation Research Part E: Logistics and Transportation Review, 47(1), 73-84.
61. Yan, S., & Young, H. F. (1996). A decision support framework for multi-fleet routing and multi-stop flight scheduling. Transportation Research Part A: Policy and Practice, 30(5), 379-398.
62. Yoon, M.G., Baek, Y.H., & Tcha, D.W. (1998). Design of a distributed fiber transport network with hubbing topology. European Journal of Operational Research 104 (3), 510–520.
63. Vance, P. H., Barnhart, C., Johnson, E. L., & Nemhauser, G. L. (1997). Airline crew scheduling: A new formulation and decomposition algorithm. Operations Research, 45(2), 188-200.
64. Zurheide, S., & Fischer, K. (2012). A revenue management slot allocation model for liner shipping networks. Maritime Economics & Logistics, 14(3), 334-361.
三、網站部分
1. 統一速達股份有限公司,http://www.t-cat.com.tw/,99年1月22日查閱。
2. 台灣宅配通股份有限公司,http://www.t-cat.com.tw/,99年1月22日查閱。
校內:2020-09-04公開