| 研究生: |
李政融 Li, Jeng-Rong |
|---|---|
| 論文名稱: |
動力三軸試驗探討含細料粉質砂土之動態行為 The Study on Dynamic Behavior of Silty Sands with Fines Using Dynamic Triaxial Test |
| 指導教授: |
倪勝火
Ni, Sheng-Huo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 動力三軸試驗 、粉質砂土 、細粒料含量 、整體孔隙比 、最大剪力模數 、動態強度 |
| 外文關鍵詞: | dynamic triaxial tests, silty sands, fines content, global void ratio, the maximum shear modulus, dynamic strength |
| 相關次數: | 點閱:115 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以C.K.C.動力三軸儀,採用彰化縣員林鎮崙雅里之民安宮前取樣之土壤,在控制不同的整體孔隙比下,逐步改變重模試體的細粒料含量,並進行動態三軸試驗,以探討整體孔隙比與細粒料含量對於粉質砂土動態行為之影響;之後再彙整本研究與所蒐集的台灣中南部粉質砂土之相關資料,並針對其基本物性、微觀結構、礦物成分及動態強度之影響等方面做進一步的整合、比較與探討,以更全面的描述細粒料含量對於粉質砂土動態強度之影響。
本試驗之結果顯示,在相同整體孔隙比下,粉質砂土的最大剪力模數與動態強度會隨著細粒料含量的增加而降低,特別在細粒料含量15%-30%區間有大幅衰減的行為,而當細粒料含量超過60%時,則有漸趨於一定值的走向。大體而言,細粒料含量為60%之試體,其動態強度約比純淨砂土試體降低25%。其次,據本試驗與翁華鴻(1997)、簡宏濱(1998)等針對台南七股地區土壤動態特性之研究均指出,在砂性土壤中細粒料含量高時,最大剪力模數與動態強度之相關性不高。
最後由彙整的資料顯示,台灣中南部地區粉土質砂比重範圍為2.67-2.75之間,且大多呈無塑性(NP)或低塑性(PI<4)狀態,自然含水量與液性限度相當接近,為高靈敏性土壤;而平均粒徑D50約在0.08 mm~0.70 mm之間,均座落在Seed(1967)所提之易發液化之區間內。而在動態強度的探討方面,隨細粒料含量增加將呈現「逐漸下降」、「逐漸上升」以及「先下降後上升」等三種截然不同的趨勢。
In this study, dynamic triaxial tests were conducted by CKC cyclic triaxial test system. The sand with fines content were collected in Yuanlin of Changhua. The samples are prepared by moist tamping and the fines content of sample will be gradually adjusted under different global void ratio. The purpose of this study is to investigate the effect of global void ratio and fines content on the dynamic behavior of silty sands. The study will also integrate the data from this project and researches of silty sands collected in the central and southern Taiwan, and especially focus on the comparison and discussion of basic properties, micro-structure, mineral composition and dynamic strength within those data.
According to the test results, the maximum shear modulus and dynamic strength of samples decrease with increasing fines content of samples. It declines between the range from 15% to 30% of fines content. As the fines content of samples over 60%, the maximum shear modulus and dynamic strength would gradually tend to a constant value. Generally speaking, the dynamic strength of the samples with fines content of 60% approximately reduces 25% of that of the samples with pure sand.
According to the date, the specific gravity of silty sand were ranging from 2.67 to 2.75. Most of silty sands were nonplastic or low plastic with plastic index lower than 4. The liquid limits of the sands were nearly the same as the field water contents, and it can be cataloged as sensitive soil. The mean grain sizes were in between 0.08mm and 0.7mm. The range of grain size was coincided with the range of grain size which were senstive to be liquefiable. In the exploring of dynamic strength, the result show that three completely different trends including, they are "a gradual decreasing", "a gradual increasing", and "a first decreasing then increasing ".
參考文獻
1.Chaney, R.C., “Saturation Effects on the Cyclic Strength of Sands,” Earthquake Engineering and Soil Dynamics, ASCE, Vol. 1, pp. 342-358, 1978.
2.Chang, N.Y., Yeh, S.T., and Kaufman, L.P., “Liquefaction Potential of Clean and Silty Sands,” Proceedings of the Third International Earthquake Microzonation Conference, Vol. 2, pp. 1017-1032, 1982.
3.Chung, K.Y.C., and Wong, I.H., “Liquefaction Potential of Soils with Plastic Fines,” Soil Dynamics and Engineering Conference,Southampton, pp. 887-897, 1982.
4.Ishibashi, I.M., Sherlif, M.A., and Cheng, W.L., “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,” Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp. 37-48, 1982.
5.Ishihara, K., “Liquefaction and Flow Failure During Earthquakes,” Geotechnique, Vol. 43, No.3, pp.315-415, 1993.
6.Ishihara, K., and Tadatsu, H., “Effects of Over-Consolidation ko Conditions on the Liquefaction Characteristics of Sands,” Soils and Foundations, Vol. 19, No. 4, pp. 59-68, 1979.
7.Ishihara, K., Troncoso, J., Kawase, Y., and Takahashi, Y., “Cyclic Strength Characteristics of Tailing Materials,” Soil and Foundations, pp.127-142, 1980.
8.Kramer, S.L., Geotechnical Earthquake Engineering, Prentice Hall Inc, New Jersey, 1996.
9.Kaufman, L.P., “Percentage Silt Content in Sand and its Effect on Liquefaction Potential,” Ph.D.Thesis, University of Colorado, 1981.
10.Lade, P.V., and Hernandez, S.B., “Membrane Penetration Effect in Undrained Tests,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. CT2, pp.109-125, 1977.
11.Lee, K.L., and Fitton, J.A., “Factors Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquakes on Soils and Foundations, ASTM, STP 450, pp.71-95, 1969.
12.Lee, K.L., and Albaisa, A., “Earthquake Induced Settlements in Saturated Soil,” Vibration Effects of Earthquake on Soil and Foundation , ASTM, STP 450, pp.71-96, 1969.
13.Miura, S., and Kawamura, S., “A Procedure Minizing Membrane Penetration Effects in Undrained Triaxial Test,” Soils and Foundations,Vol. 36, No. 4, pp.119-126, 1996.
14.Mulilis, J.P., “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC 75-18, U.C.Berkeley Earthquake Engineering Research Center, 1975.
15.Nagase, H., and Ishihara, K., “Liquefaction-Induced Compaction and Settlement of Sand during Earthquakes,” Soils and Foundations, Vol. 28, No. 1, pp. 65-76, 1988.
16.Polito, C.P., and Martin, J.R., “Effect of Nonplastic Fines on the Liquefaction Resistance of Sands,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 5, pp. 408-415, 201.
17.Peacock, W.H., and Seed, H.B., “Sand Liquefaction Under Cyclic Loading Simple Shear Conditions,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, SM3, pp. 689-708, 1968.
18.Seed, H.B., Idriss, I.M., Makdidi, F., and Banerjee, N., “ Representation of Irregular Stress-Time Histories by Equivalent Uniform Stress Series in Liquefaction Analysis,” Report No. EERC 75-29, Earthquake Engineering Research Center, University of California at Berkeley, 1975.
19.Seed, H.B., and Idriss, I.M., “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM9, pp. 249-274, 1971.
20.Seed, H.B., “Evaluation of Soil Liquefaction Effects on Level Ground during Earthquakes,” Liquefaction Problems in Geotechnical Engineering, pp. 1-104, 1976.
21.Seed, H.B., and Lee, K.L., “Liquefaction of Saturated Sands during Cyclic Loading,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134, 1966.
22.Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M., “The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluation,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 12, pp.1425-1445, 1985.
23.Thevanyagm, S., Fiorilb, M., and Liang, J., “Effect of Non-Plastic Fines Undrained Cyclic Strength of Silty Sands,” Soil Dynamic and Liquefaction 2000, pp. 77-91, 115-123, 2000.
24.Guo, T., and Prakash, S., “Liquefaction of Silts and Silt-Clay Mixtures,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, pp. 706-710, 1999.
25.Vaid, Y.P., “Liquefaction of Silty Soils,” Ground Failures under Seismic Conditions, Geotechnical Special Publication, No. 44, ASCE, pp.1-16, 1994.
26.Wong, R.T., Seed, H.B., and Chan, C.K., “Cyclic Loading Liquefaction of Gravelly Soils,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 101. No. GT6, pp. 571-583, 1975
27.Xenaki, V.C., and Athanasopoulos, G.A., “Liquefaction Resistance of Sand-Silt Mixtures:an Experimental Investigation of the Effect of Fines,” Soil Dynamics and Earthquake Engineering, Vol. 23, No. 3, pp.183-194, 2003.
28.Yamamuro, J.A., and Kelly, M., “Monotonic and Cyclic Liquefaction of Very Loose Sands with High Silt Content,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp. 314-323, 2001.
29.Yamamuro, J. A., and Lade, P.V., “Experiments and Modeling of Silty Sands Susceptible to Static Liquefaction,” Mechanics of Cohesive-Frictional Meterials, Vol. 4, pp. 545-564, 1999.
30.Yoshimi, Y., Tanaka, K., and Tokimatsu, K., “Liquefaction Resistance of Partially Saturated Sand,” Soils and Foundations, Vol. 29, No. 3, pp. 157-162, 1988.
31.吳偉特,「台灣地區砂性土壤液化潛能之初步研究」,土木水利,第六卷,第二期,第39-70 頁,1979。
32.吳偉特,「土壤動力學與大地工程」,地工技術雜誌,第九期,第5-19頁,1985。
33.吳偉特、楊騰芳,「細料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74頁,1987。
34.林靜怡,「細粒料對粉土細砂小應變勁度之影響」,國立交通大學土木工程系研究所,碩士論文,2003。
35.林珈禾,「動力三軸自動化程式研究」,國立成功大學土木工程系研究所,碩士論文,2008。
36.林智偉,「無塑性細料對砂質土壤液化阻抗之研究」,國立成功大學土木工程系研究所,碩士論文,2006。
37.范恩碩,「以九二一集集地震案例探討細料對液化潛能評估之影響」,國立成功大學土木工程系研究所,博士論文,2004。
38.施慶煌,「低塑性粉質砂土之原狀與重模試體動態性質之探討」,國立成功大學土木工程系研究所,碩士論文,2009
39.孫家雯,「砂土細粒界定對液化強度之影響」,國立台灣大學土木工程系研究所,碩士論文,2001。
40.翁華鴻,「台南七股地區土壤動態特性之分析」,國立成功大學土木工程系研究所,碩士論文,1997。
41.簡宏濱,「細料對七股地區土壤液化行為之研究」,國立成功大學土木工程系研究所,碩士論文,1998。
42.許家豪,「不同粒徑細粒料對土壤液化阻抗影響之研究」,國立成功大學土木工程系研究所,碩士論文,2003。
43.陳守德,「微量細料對砂性土壤液化潛能之影響」,國立台灣大學土木工程系研究所,碩士論文,1986
44.陳界文,「細粒料特性對土壤抗液化強度之影響」,國立台灣大學土木工程系研究所,碩士論文,2001
45.陳嘉裕,「細粒料含量對沙土浪化潛能之影響研究」,國立成功大學土木工程學研究所,碩士論文,1999。
46.陳堯中、游步上,「台北粉土質砂之剪力模數與阻尼比」,中國土木水利工程學刊,第二卷,第三期(1990)
47.郭毓真,「細粒料含量對麥寮砂動態行為之影響」,國立交通大學土木工程系研究所,碩士論文,2004。
48.張清秀,「黏土含量對福隆砂液化潛能之影響」,國立台灣大學土木工程系研究所,碩士論文,1982。
49.張嘉偉,「圓錐貫入試驗在粉砂中之標定」,國立交通大學土木工程系研究所,碩士論文,1997。
50.黃耀道,「台灣中西部粉土質砂土液化行為分析」,國立交通大學土木工程系研究所,博士論文,2007。
51.游家豪,「低塑性細料對粉質砂土動態性質之影響」,國立成功大學土木工程系研究所,碩士論文,2007。
52.廖元憶「台灣西南沿海高細粒料含量砂土的探討」,國立成功大學土木工程系研究所,碩士論文,2005。
53.楊沂恩,「細料含量及塑性指數對砂土液化影響之研究」,國立成功大學土木工程系研究所,碩士論文,1984。
54.鄭文隆,「淺談地震作用下基礎土壤液化及液化潛能評估法」,現代營建,第二卷,第一期,1981。
55.蕭達鴻、林鈺智,「細料對不同級配之沉泥質砂動態與靜態強度之影響」,技術學刊,第二十卷,第四期,PP.399-412,2005。
56.劉全修,「台灣中南部粉土質細砂的壓縮性」,國立交通大學土木工程系研究所,碩士論文,2008。
57.蔡明道,「細粒料含量對粉土細砂不排水強度之影響」國立交通大學土木工程系研究所,碩士論文,2002。
58.鍾育明,「動力三軸試驗程式之研究」,國立成功大學土木工程研究所,碩士論文,2007。
59.鍾瑞敏,「砂土中黏土含量對液化潛能之影響」,國立台灣大學土木工程系研究所,碩士論文,1981。
60.鍾仁彰,「壓密應力比、相對密度與細料含量對砂土液化行為之研究」,國立成功大學土木工程系研究所,碩士論文,2005。