| 研究生: |
鄭惠嬪 Cheng, Hui-Pin |
|---|---|
| 論文名稱: |
AKT在血管收縮素所誘導的平滑肌細胞老化中扮演的角色 The role of Akt signaling in Angiotensin II-induced vascular smooth muscle cell senescence |
| 指導教授: |
江美治
Jiang, Meei-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 老化 、Akt |
| 外文關鍵詞: | senescence, Akt |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
老化是造成心血管疾病的主要危險因子。然而,目前對於血管老化的作用機制仍所知甚少。在先前的研究中發現,Akt 是調控細胞的代謝與生存的一個重要蛋白激酶,但在最近的研究中也發現,若使Akt不正常的長期活化,則會導致老化細胞的增加;反之,在人類內皮細胞的實驗中,若抑制Akt不正常的活化,則可以延長細胞壽命。細胞內已知能調控Akt活化的因子主要有phosphatidylinositol 3-kinase (PI3K) 以及 小G蛋白Ras。目前已知由血管收縮素(Angiotensin II)所誘導的血管平滑肌細胞老化,主要與細胞內NADPH oxidase所產生的氧自由基有關。在血管平滑肌細胞中,血管收縮素透過增加細胞內的氧自由基,進一步去刺激Akt的活化。然而,在血管收縮素所誘導的細胞老化中,Akt扮演的角色仍不清楚。因此,在此研究中我主要探討的是Akt在血管收縮素所誘導的人類主動脈平滑肌細胞老化中所扮演的角色。我藉由分析三個已知的細胞老化標誌,senescence-associated β-galactosidase (SA-β-gal)的活性,以及兩個細胞週期抑制蛋白;p21和p16的表現量來鑑別細胞老化。以血管收縮素刺激人類主動脈平滑肌細胞24,48或72小時之後會增加SA-β-gal的活性與p21及p16的表現量。此外,血管收縮素亦會刺激反映DNA複製的BrdU攝取量並會增加細胞數。有趣的是,在血管收縮素的刺激下,Akt只在48及72小時明顯地被活化,在24小時卻沒有。若在血管收縮素刺激時;共同處理PI3K的抑制劑LY294002或mTOR的抑制劑rapamycin,或是在細胞內過量表現不活化的Akt突變蛋白AAA-Akt,皆可有效抑制血管收縮素所誘導的Akt活化,並抑制細胞老化。反之,在無血管收縮素的情況下,在細胞內過量表現活化的Akt突變蛋白myr-Akt,則會增加細胞老化的現象。若使用氧自由基清除劑N-acetyl-L-cysteine(NAC) 與apocynin,或可通透細胞膜之過氧化氫酶(membrane-permeable catalase),均會抑制血管收縮素所誘導的Akt活化,並抑制細胞老化。此外,使用干擾RNA抑制NADPH氧化酶的分子異構物Nox1,也顯著抑制血管收縮素所誘導的Akt活化與細胞老化。上述結果顯示,血管收縮素所誘導的Akt活化與細胞內Nox1產生的氧化壓力有關,且Akt持續的活化,在血管收縮素所誘導的細胞老化過程中扮演重要的角色。
Aging is the major risk factor for cardiovascular diseases. Mechanisms accounting for vascular aging remain poorly understood. Previous studies showed that protein kinase Akt is a nutrient sensor involved in regulating cellular metabolism and cell survival. Long-term activation of Akt increases cellular senescence and inhibition of Akt extends the lifespan of primary cultured human endothelial cells. Upstream signaling pathways leading to Akt activation include phosphatidylinositol 3-kinase (PI3K) and small G protein Ras. Ang II induces cellular senescence of vascular smooth muscle cells (VSMCs) involving NADPH oxidase-derived reactive oxygen species (ROS). In VSMCs, Ang II stimulates Akt activation through ROS, but the role of Akt activation in Ang II-induced cellular senescence remains unclear. This study investigated the role of Akt in Ang II-induced cellular senescence of human aortic VSMCs. Cellular senescence was assessed with senescence-associated β-galactosidase (SA-β-gal) activity and the expression of cell cycle inhibitors p21 and p16. Ang II (10-7M) treatment for 24 h, 48 h or 72 h induced cellular senescence of VSMCs. Under this condition, Ang II treatment increased BrdU-positive cells and cell number in a time-dependent manner. These results suggested that Ang II induced premature senescence of VSMCs. Interestingly, Ang II treatment for 48 h or 72 h, but not 24 h, induced Akt activation. The co-treatment of Ang II with LY294002, a selective inhibitor of PI3K, or rapamycin, an inhibitor of mTOR, blocked Ang II-induced Akt activation, SA-β-gal activity, and expression of p21 and p16. Ang II-induced senescence was eliminated by overexpressing dominant-negative Akt while overexpressing constitutively active Akt alone increased VSMCs senescence. In addition, co-treating VSMCs with Ang II and antioxidants, N-acetyl-cysteine and apocynin, or a membrane-permeable catalase inhibited Ang II-induced Akt activation, SA-β-gal activity, and expression of p21 and p16. Moreover, small interfering RNA for NADPH oxidase catalytic subunit isoform NOX1 markedly inhibited Ang II-induced Akt activation and cellular senescence. These results suggest that NOX1-derived ROS-dependent, sustained Akt activation plays an important role in promoting Ang II-induced cellular senescence of VSMCs.
1. Hubert H. B., Feinleib M., McNamara P. M., Castelli W. P. Obesity as an independent risk factor for cardiovascular disease: A 26-year follow-up of participants in the Framingham Heart Study. Circulation 1983.67, 968–977.
2. Castelli W. P. Epidemiology of coronary heart disease: The Framingham study. Am.J. Med. 1984.76, 4–12.
3. Csiszar, A.,M.Wang, E.G. Lakatta & Z. I. Ungvari. Inflammation and endothelial dysfunction during aging: role of NF-{kappa} B. J. Appl. Physiol. 2008.105: 1333–1341.
4. Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729 –740.
5. Olive M, Mellad JA, Beltran LE, Ma M, Cimato T, Noguchi AC, San H, Childs R, Kovacic JC, Boehm M. p21Cip1 modulates arterial wound repair through the stromal cell-derived factor-1/CXCR4 axis in mice. J Clin Invest. 2008;118:2050 –2061.
6. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 1965.37, 614–636.
7. Campisi J. Replicative senescence: An old lives’ tale. Cell 1996.84, 497–500.
8. Marin J. Age-related changes in vascular responses: a review. Mech Ageing Dev. 1995; 79: 71–114.
9. Alexander K., Hinds P. W. Requirement for p27KIP1 in retinoblastoma protein-mediated senescence. Mol. Cell. Biol. 2001.21, 3616–3631.
10. Miyauchi H., Minamino T., Tateno K., Kunieda T., Toko H., Komuro I. Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J. 2004.23, 212–220.
11. Dimri, G. P, Lee X, Basile G. A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 1995.92, 9363–9367.
12. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ,DiMaio D, Hwang ES. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 2006.5, 187–195.
13. Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 2003.22, 4212–4222.
14. Price, J. S., Waters, J. G., Darrah, C., Pennington, C., Edwards, D. R., Donell, S. T., Clark, I. M. The role of chondrocyte senescence in osteoarthritis. Aging Cell 2002.1, 57–65.
15. Campisi, J., Dimri, G., and Hara, E. In Handbook of the Biology of Aging, Fourth Edition, E. Schneider and J. Rowe, eds. New York: Academic Press, 1996.pp. 121–149.
16. Itahana K, Campisi J, Dimri GP. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol. 2007;371:21-31.
17. Naka K, Tachibana A, Ikeda K, Motoyama N. Stress-induced Premature Senescence in hTERT-expressing Ataxia Telangiectasia Fibroblasts. J Biol Chem 2004: 2030–2037.
18. Dumont, P., Burton, M., Chen, Q. M., Gonos, E. S., Frippiat, C., Mazarati,J. B., Eliaers, F., Remacle, J., and Toussaint, O. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic. Biol. Med. 2000. 28, 361–373
19. von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 2002.27, 339–344.
20. Wolf G, Wenzel U.O. Angiotensin II and cell cycle regulation. Hypertension, 2004.43: 693-698.
21. Touyz R.M, Schiffrin E.L. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacological Reviews, 2000.52: 639-672.
22. Touyz R.M. Reactive oxygen species and angiotensin II signaling in vascular cells - implications in cardiovascular disease. Braz J Med Biol Res, 2004, 37(8) 1263-1273
23. Wilcox C.S. Reactive oxygen species: roles in blood pressure and kidney function. Current Hypertension Reports, 2002.4: 160-166.
24. Griendling K.K, Sorescu D & Ushio-Fukai M. NADPH oxidase. Role in cardiovascular biology and disease. Circ Res, 2000.86: 494-501.
25. Dostal D.E, Baker K.M. Angiotensin II stimulation of left ventricular hypertrophy in adult rat heart: Mediation by the AT1 receptor. Am J Hypertens 1992.5:276–280.
26. Sadoshima J, Izumo S. Molecular characterization of angiotensin II– induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: Critical role of the AT1 receptor subtype. Circ.Res 1993.73:413–423.
27. Duff J.L. , Berk B.C. and Corson M.A. Angiotensin II stimulates the pp44 and pp42 mitogen-activated protein kinases in cultured rat aortic smooth muscle cells. Biochem Biophys Res Commun 1992.188:257–264.
28. Molloy CJ, Taylor DS and Weber H, Angiotensin II stimulation of rapid protein tyrosine phosphorylation and protein kinase activation in rat aortic smooth muscle cells. J Biol Chem 1993.268:7338–7345.
29. Ishida M, Marrero MB, Schieffer B, Ishida T, Bernstein KE and Berk BC. Angiotensin II activates pp60c-src in vascular smooth muscle cells. Circ Res 1995.77:1053–1059.
30. Schmitz U, Ishida T, Ishida M, Surapisitchat J, Hasham MI, Pelech S and Berk BC. Angiotensin II stimulates p21-activated kinase in vascular smooth muscle cells: Role in activation of JNK. Circ Res 1998.82:1272–1278.
31. Kusuhara M, Takahashi E, Peterson TE, Abe J, Ishida M, Han J, Ulevitch R and Berk BC. p38 Kinase is a negative regulator of angiotensin II signal transduction in vascular smooth muscle cells: Effects on Na1/H1 exchange and ERK1/2. Circ Res 1998.83:824–831.
32. Giasson E, Meloche S. Role of p70 S6 protein kinase in angiotensin II-induced protein synthesis in vascular smooth muscle cells. J Biol Chem. 1995.270: 5225–5231.
33. Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem. 1996;271: 23317–23321.
34. Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, Taylor WR, Griendling KK. Novel role of NADH/NADPH oxidasederived hydrogen peroxide in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension. 1998;32:488–495.
35. Bennett M.R., Macdonald K., Chan S.W., Boyle J.J., Weissberg P.L.Cooperative interactions between RB and p53 regulate cell proliferation, cell senescence, and apoptosis in human vascular smooth muscle cells from atherosclerotic plaques. Circ Res 1998;82:704-712.
36. Kunieda T, Minamino T, Nishi J, Tateno K, Oyama T, Katsuno T, Miyauchi H, Orimo M, Okada S, Takamura M, Nagai T, Kaneko S and Komuro I. Angiotensin II Induces Premature Senescence of Vascular Smooth Muscle Cells and Accelerates the Development of Atherosclerosis via a p21-Dependent Pathway. Circ Res 2006;114:953–960
37. Hastings R, Qureshi M, Verma R, Lacy PS, Williams B. Telomere attrition and accumulation of senescent cells in cultured human endothelial cells. Cell Prolif. 2004;37:317–324.
38. Herbert K, Mistry Y, Hastings R, Poolman T, Niklason L,Williams B. Angiotensin II–Mediated Oxidative DNA Damage Accelerates Cellular Senescence in Cultured Human Vascular Smooth Muscle Cells via Telomere-Dependent and Independent Pathways. Circ Res 2008; 102: 201-208
39. Dennis P. B., Jaeschke A., Saitoh M., Fowler B., Kozma S. C., Thomas G. Mammalian TOR: A homeostatic ATP sensor. Science 2001.294, 1102–1105.
40. Cota D., Proulx K., Smith K. A., Kozma S. C., Thomas G., Woods S. C., Seeley R. J. Hypothalamic mTOR signaling regulates food intake. Science 2006.312, 927–930.
41. Cho H., Mu J., Kim J. K., Thorvaldsen J. L., Chu Q., Crenshaw III E. B., Kaestner K. H., Bartolomei M. S., Shulman G. I., Birnbaum M. J. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBb). Science 2001.292, 1728–1731.
42. Um S. H., Frigerio F., Watanabe M., Picard F., Joaquin M., Sticker M., Fumagalli S., Allegrini P. R., Kozma S. C., Auwerx J., Thomas G. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004.431, 200–205.
43. Brunet A., Bonni A., Zigmond M. J., Lin M. Z., Juo P., Hu L. S., Anderson M. J., Arden K. C., Blenis J., Greenberg M. E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999.96, 857–868.
44. Shiojima I., Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 2002.90, 1243–1250.
45. Guertin D. A., Stevens D. M., Thoreen C. C., Burds A. A., Kalaany N. Y., Moffat J., Brown M., Fitzgerald K. J., Sabatini D. M. Ablation in mice of the mTORC components raptor, rictor,or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCa, butnot S6K1. Dev. Cell 2006.11, 859–871.
46. Sarbassov, D.D., Ali, S.M., and Sabatini, D.M. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 2005.17, 596–603.
47. Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005.307, 1098–1101.
48. Alessi, D.R, Andjelkovic,M, Caudwell, B, Cron, P, Morrice, N, Cohen, P, and Hemmings, B.A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996.15, 6541–6551.
49. Zeng Z, Sarbassov D. D, Samudio I. J, Yee K. W, Munsell M. F, Ellen Jackson C, Giles F. J, Sabatini D. M, Andreeff M, Konopleva M. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 2007.109, 3509–3512.
50. Sarbassov D. D, Ali S.M, Sengupta S, Sheen J. H, Hsu P. P, Bagley A. F, Markhard A. L, Sabatini D. M, Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 2006.22, 159–168.
51. Yaswen, P, Campisi J. Oncogene-induced senescence pathways weave an intricate tapestry. Cell 2007.128,233–234.
52. Morris JZ, Tissenbaum HA, Ruvkun G., A phosphatidylinositol- 3-OH kinase family member regulating longevity and diapauses in Caenorhabditis elegans. Nature 1996.382: 536–539
53. Paradis S, Ruvkun G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 1998.12: 2488–2498
54. Lee RY, Hench J, Ruvkun G. Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 2001.11: 1950–1957.
55. Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/ IGF-1 and germline signaling. Nat Genet 2001.28: 139–145.
56. Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: An HNF-3/ forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997.278: 1319–1322.
57. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997.389: 994–999.
58. Fabrizio P, Liou LL, Moy VN, Diaspro A, SelverstoneValentine J, Gralla EB, Longo VD. SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 2003.163: 35–46.
59. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003.424: 277–283.
60. Miyauchi1 H, Minamino1 T, Tateno K, Kunieda T, Toko H and Komuro. Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J. 2004. 23, 212–220.
61. Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science 2001.292, 288–290.
62. Kaeberlein, M., Powers, R. W., 3rd, Steffen, K. K., Westman, E. A., Hu, D., Dang, N., Kerr, E. O., Kirkland, K. T., Fields, S., and Kennedy, B. K. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 2005.310, 1193–1196.
63. Jia, K., Chen, D, Riddle, D. L. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 2004.131, 3897–3906.
64. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 2003.426, 620.
65. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010.11, 35–46.
66. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 2004.14, 885–890.
67. Harrison, D., Strong, R., Sharp, Z., Nelson, J., Astle, C., Flurkey, K., Nadon, N., Wilkinson, J., Frenkel, K., Carter, C., Pahor, M., Javors, M., Fernandez, E., Miller, R. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009.460, 392–395.
68. Finkel T. Signal transduction by reactive oxygen species in non-phagocytic cells. J Leukoc Biol 1999;65:337–40.
69. Madamanchi NR, Hakim ZS, Runge MS. Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes. J Thromb Haemost. 2005;3(2):254-267.
70. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:R551-R560.
71. Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci. 2000;25:502-508.
72. Mueller CF, Laude K, McNally JS, Harrison DG. ATVB in focus: redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol. 2005;25(2):274-278.
73. Touyz RM. Oxidative stress and vascular damage in hypertension. Curr Hypertens Rep. 2000;2(1):98-105.
74. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74:1141–1148.
75. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86(5):494-501.
76. Beckman KB, Ames BN, The free radical theory of aging matures. Physiol Rev 1998.78: 547–581
77. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994;74:1141–8.
78. Marumo T, Schini-Kerth VB, Fisslthaler B, Busse R. Platelet-derived growth factor stimulated superoxide anion production modulates activation of transcription factor NF-kappaB and expression of monocyte chemoattractant protein-1 in human aortic smooth muscle cells. Circ 1997;96:2361–7.
79. Ramachandran A, Levonen AL, Brookes PS, Ceaser E, Shiva S, Barone MC. Mitochondria, nitric oxide, and cardiovascular dysfunction. Free Radic Biol Med 2002;33:1465–74.
80. Lin B-T. The role of c-Jun N-terminus kinase in angiotensin II-induced cellular senescence of vascular smooth muscle cell,; 2008.
81. Fabrizio P, Pozza F, Pletcher S. D, Gendron C. M, Longo V. D, Regulation of longevity and stress resistance by Sch9 in yeast. Science 2001.292, 288–290.
82. Kaeberlein M, Powers III R. W, Steffen K. K, Westman E. A, Hu D, Dang N, Kerr E. O, Kirkland K. T, Fields S, Kennedy B. K, Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 2005.310, 1193–1196.
83. Datta S. R, Brunet A, Greenberg M. E, Cellular survival: A play in three Akts. Genes Dev. 1999.13, 2905–2927.
84. Guertin D. A, Stevens D. M, Thoreen C. C, Burds A. A, Kalaany N. Y, Moffat J, Brown M, Fitzgerald K. J, Sabatini D. M, Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCa, but not S6K1. Dev. Cell 2006.11, 859–871.
85. Frias M. A, Thoreen C. C, Jaffe J. D, Schroder W, Sculley T, Carr S. A, Sabatini D. M., mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 2006.16, 1865–1870.
86. Zeng Z, Sarbassov D. D, Samudio I. J, Yee K. W, Munsell M. F, Ellen Jackson C, Giles F. J, Sabatini D. M, Andreeff M, Konopleva M. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 2007.109, 3509–3512.
87. Bhaskar P. T., Hay N., The two TORCs and Akt. Dev. Cell 2007.12, 487–502.
88. Hemmings B. A., Akt signaling: Linking membrane events to life and death decisions. Science 1997.275, 628–630.
89. Miyauchi H., Minamino T., Tateno K., Kunieda T., Toko H., Komuro I., Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J. 2004.23, 212–220.
90. Nishi J.-I., Minamino T., Miyauchi H., Nojima A., Tateno K., Okada S., Orimo M., Moriya J., Fong G.-H., Sunagawa K., Shibuya M., Komuro I., Vascular endothelial growth factor receptor-1 regulates postnatal angiogenesis through inhibition of the excessive activation of Akt. Circ. Res. 2008.103, 261–268.
91. Kunieda T, Minamino T, Nishi J, Tateno K, Oyama T, Katsuno T, Miyauchi H, Orimo M, Okada S, Takamura M, Nagai T, Kaneko S, Komuro I. Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation. 2006;114(9):953-960.
92. Fernández-Hernando C., Ackah E., Yu J., Suárez Y., Murata T., Iwakiri Y., Prendergast J., Miao R. Q., Birnbaum M. J., Sessa W. C., Loss of akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metlab. 2007.6, 446–457.
93. Longo VD, Finch CE, Evolutionary medicine: from dwarf model systems to healthy centenarians. Science 2003.299: 1342–1346
94. Schmelzle T., Hall M. N., TOR, a central controller of cell growth. Cell 2000.103, 253–262.
95. Martin D. E., Hall M. N., The expanding TOR signaling network. Curr. Opin. Cell Biol. 2005.17, 158–166.
96. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 2006.22, 159–168.
97. Shor B, Zhang WG, Toral-Barza L, Lucas J , Abraham RT, Gibbons JJ, Yu K. A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis. Cancer Res. 2008.68, 2934–2943.
98. Hietakangas V., Cohen S. M., Re-evaluating AKT regulation: Role of TOR complex 2 in tissue growth. Genes Dev. 2007.21, 632–637.
99. Frias M. A., Thoreen C. C., Jaffe J. D., Schroder W., Sculley T., Carr S. A., Sabatini D. M., mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 2006.16, 1865–1870.
100. Murdoch CE, Grieve DJ, Cave AC, Looi YH, Shah AM. NADPH oxidase and heart failure. Curr Opin Pharmacol 2006;6:148–153.
101. Min LJ, Mogi M, Iwanami J, Li JM, Sakata A, Fujita T, Tsukuda K, Iwai M, Horiuchi M. Cross-talk between aldosterone and angiotensin II in vascular smooth muscle cell senescence. Cardiovasc Res. 2007;76(3):506-516.
102. Debidda M, Williams DA, Zheng Y. Rac1 GTPase regulates cell genomic stability and senescence. J Biol Chem. 2006;281(50):38519-38528.
103. Geiszt M, Kopp J.B, Varnai P, Leto T.L. Identification of renox, an NAD(P)H oxidase in kidney. Proc. Natl Acad. Sci. 2000 Jul 5;97(14):8010-4.