簡易檢索 / 詳目顯示

研究生: 胡書翰
Hu, Shu-Han
論文名稱: 建構基於陣列波導光柵之光交換器以實現光分波/分碼被動網路之隨意錯誤回復機能
Fault-Recovery with Waveguide Grating-based Optical Switch on OCDMA over WDM-PON
指導教授: 黃振發
Huang, Jen-Fa
共同指導教授: 張耀堂
Chang, Yao-Tang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 97
中文關鍵詞: 光被動網路陣列波導光柵隨意錯誤回復回復保護分波暨分碼多重存取
外文關鍵詞: Passive optical network (PON), Arrayed-waveguide grating (AWG), Random fault-recovery, Restoration, Optical wavelength multiplexing/optical code-division multiple-access (WDM/OCDMA)
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為因應被動光網路靈活、私密與存活能力(survivable capacity)的多樣性需求,以及探討分散光纖損壞的替代方式。本論文以陣列波導光柵(arrayed-waveguide grating, AWG)路由器為基礎,建置一套具備迂迴繞徑的自動隨意分享回復保護(automatic random fault-recovery)機制於光分波暨分碼多重存取(optical code-division multiple- access over WDM-PON, 本論文簡寫為WDM/OCDMA)架構。

    本論文在既有無建置保護與重建(回復)保護的架構下,首要需考量:減少大規模佈建光纖的興建工程,暨避免配置過多雙重冗餘的備援設備。在此提出以AWG路由器為基礎所建置的光交換器(AWG-based optical switch),將使得各自光網路單元群組(ONU Group)使用者之間形成具備新穎迂迴繞徑特性的虛擬star-mesh (星型-網狀)拓樸架構,當分散光纖發生錯誤時,藉由繞徑至正常運作的其他分散光纖上,而實現上、下行的回復保護能力以解決分散光纖傳輸失效的問題。

    此外,本論文將探討多重存取干擾(multiple-access interference, MAI)暨相位導致振幅失真(phase-induced intensity noise, PIIN)的效應,利用這些結果及重複組合的機率概念去分析比較具備群組概念的WDM/OCDMA架構以及傳統光頻域振幅分碼多重擷取 (SAC-OCDMA) 技術的加權平均錯誤率。然而,結果顯示,在相同的錯誤率需求下,相較於傳統的未分組SAC-OCDMA,本架構能提供更多的同時使用者。此外,當有新的使用者欲加入本架構之傳輸網路,僅需藉由互連光纖(interconnection fiber) 將其連接至後端之光交換器,如此一來,即可擁有錯誤回復之保護能力。基於這些原因,相較於其他具有分散光纖保護能力之傳統分時與分波被動光網路(TDM/WDM-PON)的架構,本論文提出兼具靈活、私密性及回復機能的另一選擇性方案。

    In order to realize the various flexible, confidential and survivable capacities over passive optical network (PON), and to provide alternative routing paths while distribution fiber occurs errors. A new random fault-recovery mechanism with arrayed-waveguide grating-based (AWG-based) automatic optical switches (OSWs) are proposed and configured on optical code-division multiple-access transmissions over wavelength- division multiplexing PON scheme (the abbreviation will be WDM/OCDMA in this thesis).

    Under the conventional architecture without fault-recovery mechanism, the most concern is to decrease the construction processing and to prohibit too many duplicated redundant elements such as fiber/transceiver. When the transmission medium (only the distribution fiber will be discussed) occurs failures, the proposed AWG-based automatic optical switches are configured into a virtual star-mesh topology to transfer the affected ONU groups’ upstream or downstream wavebands to the others fibers which in the normal working state immediately.

    Moreover, the effect of multiple-access interference (MAI) and phase-induced intensity noise (PIIN) are investigated. By using these results and the concepts of “repeated combination”, we can obtain the weighted-average bit error rate (BER) of the conventional spectral-amplitude coding OCDMA (SAC-OCDMA) and our WDM/OCDMA (i.e., grouped SAC-OCDMA). However, under the same BER requirements, the results have shown that the proposed WDM/OCMDA scheme can provide more simultaneous active users than the conventional SAC-OCDMA scheme. Furthermore, while the new ONU groups (users) joined to our WDM/OCDMA transmission network, only connected them to the corresponding port of primary AWG-based OSW via the short interconnection fibers (IFs), then they also can obtain the fault-recovery capability. For these reasons, compared with the others related researches no matter in TDM- or WDM-PON, the proposed fault-recovery mechanism provides an alternative fault-recovery solution and achieves more scalability, flexibility and confidentiality.

    Chapter 1. Introduction P.1 1.1 The Development of PON Technology over FTTH P.2 1.2 The Possible Multiplexing Technology in the PON P.3 1.2.1 Time Division Multiplexing PON (TDM-PON) P.3 1.2.2 Wavelength Division Multiplexing PON (WDM-PON P.5 1.2.3 Code Division Multiplexing PON (CDM-PON) P.6 1.3 Related Researches about Protection Mechanism in TDM- and WDM-PON P.8 1.3.1 Four Protection Schemes in ITU-T recommendation G .983.1 [10] P.9 1.3.2 Group Protection Architecture (GPA) [11-12] P.12 1.3.3 Central Protection Scheme [13] P.13 1.3.4 1: N Protection Scheme [14-15] P.15 1.3.5 Centralized Alternative Path Protection Scheme [16] P.18 1.4 The Motivation of Our Research P.19 1.5 Thesis Preview P.21 Chapter 2. Overview on AWG-based Hybrid WDM/OCDMA scheme P.23 2.1 The Properties of Optical Components P.24 2.1.1 Wavelength Coupler (WC) P.24 2.1.2 Arrayed-Waveguide Grating (AWG) P.25 2.1.3 Coarse Arrayed-Waveguide Grating (Coarse AWG) P.27 2.2 Coded AWG-router with M-sequence code P.29 2.3 Up/Downlink Transmissions in WDM/OCDMA Scheme P.32 Chapter 3. Proposed Fault-Recovery Mechanism over WDM/OCDMA Architecture P.37 3.1 System Configuration P.39 3.2 Detection Unit and Control Unit P.41 3.3 Four Different Protection Streams in 2×1 OSWs and ONU Groups Side P.43 3.4 Primary AWG-based Optical Switch P.46 3.5 Slave AWG-based Optical Switch P.52 3.6 Operational Flow Charts/ Path Diagrams of the Proposed Mechanism in the Up/Downstream Traffics P.54 3.6.1 Operational flow chart and path diagram of Upstream Fault- Recovery Mechanism P.56 3.6.2 Operational flow chart and path diagram of Downstream Fault- Recovery Mechanism P.60 Chapter 4. Analysis and Comparison P.65 4.1 Bit Error Rate (BER) Evaluation P.65 4.1.1 BER derivation in WDM/OCDMA scheme P.66 4.1.2 Comparisons of BER in WDM/OCDMA and conventional SAC- OCDMA schemes P.71 4.2 Comparisons of the proposed fault-recovery mechanisms with the existing protection schemes in WDM-PON P.78 4.2.1 Protection Capability of five fault-recovery (protection) schemes P.78 4.2.2 Invalid Situation and System Complexity in each protection scheme P.80 Chapter 5. Conclusion P.85 Appendix A. The BER derivation in conventional SAC-OCDMA scheme [18] P.87 References P.93 自述(About the Author) P.97

    [1] “World Record 69-Terabit Capacity for Optical Transmission over a Single Optical Fiber,” NTT (Nippon Telegraph and Telephone Corporation), News Release, March 25, 2010, Retrieved from http://www.ntt.co.jp/news2010/1003e/100325a.html.

    [2] J. R. Stern, C. E. Hoppitt, D. B. Payne, M. H. Reeve, and K. Oakley, "TPON-a passive optical network for telephony," Fourteenth European Conference on Optical Communication, pp. 203-206 vol.1, 1988.

    [3] G. Kramer and G. Pesavento, "Ethernet passive optical network (EPON): Building a next-generation optical access network," IEEE Commun. Mag., vol. 40, pp. 66-73, Feb. 2002.

    [4] K. Kitayama, X. Wang, and N. Wada, "OCDMA over WDM PON - Solution path to gigabit-symmetric FTTH," IEEE J. Lightwave Technol., vol. 24, pp. 1654-1662, Apr 2006.

    [5] F. T. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky, "Success-HPON: A next-generation optical access architecture for smooth migration from TDM-PON to WDM-PON," IEEE Commun. Mag., pp. S40-S47, Nov 2005.

    [6] S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, "Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network," IEEE J. Lightwave Technol., vol. 22, pp. 2582-2591, Nov. 2004.

    [7] A. Sierra and S. V. Kartalopoulos, "Evaluation of Two Prevalent EPON Networks Using Simulation Methods," International Conference on Internet and Web Applications and Services/Advanced International Conference on Telecommunications, pp. 48-48, Feb. 2006.

    [8] J. S. Wu, F. R. Gu, and H. W. Tsao, "Jitter performance analysis of SOCDMA-based EPON using perfect difference codes," IEEE J. Lightwave Technol., vol. 22, pp. 1309-1319, May 2004.

    [9] A. Stok and E. H. Sargent, "The role of optical CDMA in access networks," IEEE Commun. Mag., vol. 40, pp. 83-87, Sep. 2002.

    [10] “Broadband optical access systems based on passive optical networks (PON),” ITU-T, Recommendation G. 983.1, 1998.

    [11] T. J. Chan, C. K. Chan, L. K. Chen, and F. Tong, “A self-protected architecture for wavelength division multiplexed passive optical networks,” IEEE photonics Technology Letters, vol. 15, no. 11, pp. 1660-1662, Nov. 2003.

    [12] C. M. Lee, T. J. Chan, C. K. Chan, L. K. Chen, and C. Lin, “A group protection architecture for traffic restoration in multi-wavelength passive optical networks,” European Conference on Optical Communication (ECOC), pp. Th2.4.2, 2003.

    [13] Z. X. Wang, X. F. Sun, C. L. Lin, C. K. Chan, and L. K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photonics Technology Letters, vol. 17, no. 3, pp. 717-719, Mar. 2005.

    [14] C. C. Sue, “A Novel 1:N Protection Scheme for WDM Passive Optical Networks, ”IEEE Photonics Technology Letters, vol. 18, no. 13, pp. 1472-1474, July 2006.(SCI)

    [15] C. C. Sue, “1: N Protection Scheme for AWG-based WDM PONs”, IEEE Globecom, San Francisco, pp. OPN01-1, Dec. 2006.

    [16] X. Sun, C.K. Chan, L.K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photonics Technology Letters, vol. 18, no. 4, pp. 631–633, Feb. 2006

    [17] N. Karafolas and D. Uttamchandani, “Optical Fiber code Division Multiple Access Networks: A Review,” Optical Fiber Technology, vol. 2, pp. 149-168, April 1996.

    [18] C. C. Yang, J. F. Huang, and S. P. Tseng, “Optical CDMA Network Codecs Structured with M-sequence Codes over Waveguide-Grating Routers,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 641-643, Feb. 2004.

    [19] J. F. Huang, Y. T. Chang and C. C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide- grating-based fiber-to-the-home networks,” Optical Fiber Technology, vol. 13 no. 3, pp. 215–225, July. 2007.

    [20] C. J. Chae and R. S. Tucker, “Passive Virtual Optical Networking Technique Using a Cyclic N×N Arrayed Waveguide Grating for Multiple Multihop Ring Networks,” IEEE Photonics Technology Letters, vol. 16, no. 3, pp. 948-950, March 2004.

    [21] H. Takahashi, S. Suzuki, K. Katoh, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Letter, vol. 26, pp. 87-88, 1990.

    [22] C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” Photon Technol. Letter, vol. 3, pp. 896-899, 1991.

    [23] H. Takahashi, and Y. Hibino, “Arrayed-waveguide grating wavelength multiplexers fabricated with flame hydrolysis deposition,” in Dig. 4th Optoelectronics Conf., IECIE, Japan, 1992, Paper 17C1-3.

    [24] H. Takahashi, K. Oda, H. Toba, and Y. Inoue, "Transmission characteristics of arrayed-wave-guide N×N wavelength multiplexer," IEEE J. Lightwave Technol., vol. 13, pp. 447-455, Mar 1995.

    [25] B. Vidal, D. Madrid, J. L. Corral, and J. Marti, “Novel Photonic True-Time-Delay Beamformer Based on the Free-Spectral-Range Periodicity of Arrayed Waveguide Gratings and Fiber Dispersion,” IEEE Photon. Technol., vol. 14, pp. 1614-1616, Nov. 2002.

    [26] C. Bock, J. Prat, and S. D. Walker, “Hybrid WDM/TDM PON Using the AWG FSR and Featuring Centralized Light Generation and Dynamic Bandwidth Allocation”, IEEE J. Lightwave Technol., vol. 23, Dec. 2005.

    [27] A. Banerjee, Y. Pary, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited],” Journal of Optical Networking., vol. 4, no. 11, pp. 824–833, Nov. 2005.

    [28] Z. Wei, H.M.H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitue-coding optical CDMA systems,” IEEE J. Lightwave Technol., vol. 19, pp. 1274-1281, Sep. 2001.

    [29] E.D.J. Smith, R.J. Blaikie, and D.P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol. 46, pp. 1176-1185, Sept. 1998.

    下載圖示 校內:2013-08-16公開
    校外:2015-08-16公開
    QR CODE