| 研究生: |
胡書翰 Hu, Shu-Han |
|---|---|
| 論文名稱: |
建構基於陣列波導光柵之光交換器以實現光分波/分碼被動網路之隨意錯誤回復機能 Fault-Recovery with Waveguide Grating-based Optical Switch on OCDMA over WDM-PON |
| 指導教授: |
黃振發
Huang, Jen-Fa |
| 共同指導教授: |
張耀堂
Chang, Yao-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 光被動網路 、陣列波導光柵 、隨意錯誤回復 、回復保護 、分波暨分碼多重存取 |
| 外文關鍵詞: | Passive optical network (PON), Arrayed-waveguide grating (AWG), Random fault-recovery, Restoration, Optical wavelength multiplexing/optical code-division multiple-access (WDM/OCDMA) |
| 相關次數: | 點閱:118 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為因應被動光網路靈活、私密與存活能力(survivable capacity)的多樣性需求,以及探討分散光纖損壞的替代方式。本論文以陣列波導光柵(arrayed-waveguide grating, AWG)路由器為基礎,建置一套具備迂迴繞徑的自動隨意分享回復保護(automatic random fault-recovery)機制於光分波暨分碼多重存取(optical code-division multiple- access over WDM-PON, 本論文簡寫為WDM/OCDMA)架構。
本論文在既有無建置保護與重建(回復)保護的架構下,首要需考量:減少大規模佈建光纖的興建工程,暨避免配置過多雙重冗餘的備援設備。在此提出以AWG路由器為基礎所建置的光交換器(AWG-based optical switch),將使得各自光網路單元群組(ONU Group)使用者之間形成具備新穎迂迴繞徑特性的虛擬star-mesh (星型-網狀)拓樸架構,當分散光纖發生錯誤時,藉由繞徑至正常運作的其他分散光纖上,而實現上、下行的回復保護能力以解決分散光纖傳輸失效的問題。
此外,本論文將探討多重存取干擾(multiple-access interference, MAI)暨相位導致振幅失真(phase-induced intensity noise, PIIN)的效應,利用這些結果及重複組合的機率概念去分析比較具備群組概念的WDM/OCDMA架構以及傳統光頻域振幅分碼多重擷取 (SAC-OCDMA) 技術的加權平均錯誤率。然而,結果顯示,在相同的錯誤率需求下,相較於傳統的未分組SAC-OCDMA,本架構能提供更多的同時使用者。此外,當有新的使用者欲加入本架構之傳輸網路,僅需藉由互連光纖(interconnection fiber) 將其連接至後端之光交換器,如此一來,即可擁有錯誤回復之保護能力。基於這些原因,相較於其他具有分散光纖保護能力之傳統分時與分波被動光網路(TDM/WDM-PON)的架構,本論文提出兼具靈活、私密性及回復機能的另一選擇性方案。
In order to realize the various flexible, confidential and survivable capacities over passive optical network (PON), and to provide alternative routing paths while distribution fiber occurs errors. A new random fault-recovery mechanism with arrayed-waveguide grating-based (AWG-based) automatic optical switches (OSWs) are proposed and configured on optical code-division multiple-access transmissions over wavelength- division multiplexing PON scheme (the abbreviation will be WDM/OCDMA in this thesis).
Under the conventional architecture without fault-recovery mechanism, the most concern is to decrease the construction processing and to prohibit too many duplicated redundant elements such as fiber/transceiver. When the transmission medium (only the distribution fiber will be discussed) occurs failures, the proposed AWG-based automatic optical switches are configured into a virtual star-mesh topology to transfer the affected ONU groups’ upstream or downstream wavebands to the others fibers which in the normal working state immediately.
Moreover, the effect of multiple-access interference (MAI) and phase-induced intensity noise (PIIN) are investigated. By using these results and the concepts of “repeated combination”, we can obtain the weighted-average bit error rate (BER) of the conventional spectral-amplitude coding OCDMA (SAC-OCDMA) and our WDM/OCDMA (i.e., grouped SAC-OCDMA). However, under the same BER requirements, the results have shown that the proposed WDM/OCMDA scheme can provide more simultaneous active users than the conventional SAC-OCDMA scheme. Furthermore, while the new ONU groups (users) joined to our WDM/OCDMA transmission network, only connected them to the corresponding port of primary AWG-based OSW via the short interconnection fibers (IFs), then they also can obtain the fault-recovery capability. For these reasons, compared with the others related researches no matter in TDM- or WDM-PON, the proposed fault-recovery mechanism provides an alternative fault-recovery solution and achieves more scalability, flexibility and confidentiality.
[1] “World Record 69-Terabit Capacity for Optical Transmission over a Single Optical Fiber,” NTT (Nippon Telegraph and Telephone Corporation), News Release, March 25, 2010, Retrieved from http://www.ntt.co.jp/news2010/1003e/100325a.html.
[2] J. R. Stern, C. E. Hoppitt, D. B. Payne, M. H. Reeve, and K. Oakley, "TPON-a passive optical network for telephony," Fourteenth European Conference on Optical Communication, pp. 203-206 vol.1, 1988.
[3] G. Kramer and G. Pesavento, "Ethernet passive optical network (EPON): Building a next-generation optical access network," IEEE Commun. Mag., vol. 40, pp. 66-73, Feb. 2002.
[4] K. Kitayama, X. Wang, and N. Wada, "OCDMA over WDM PON - Solution path to gigabit-symmetric FTTH," IEEE J. Lightwave Technol., vol. 24, pp. 1654-1662, Apr 2006.
[5] F. T. An, D. Gutierrez, K. S. Kim, J. W. Lee, and L. G. Kazovsky, "Success-HPON: A next-generation optical access architecture for smooth migration from TDM-PON to WDM-PON," IEEE Commun. Mag., pp. S40-S47, Nov 2005.
[6] S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, "Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network," IEEE J. Lightwave Technol., vol. 22, pp. 2582-2591, Nov. 2004.
[7] A. Sierra and S. V. Kartalopoulos, "Evaluation of Two Prevalent EPON Networks Using Simulation Methods," International Conference on Internet and Web Applications and Services/Advanced International Conference on Telecommunications, pp. 48-48, Feb. 2006.
[8] J. S. Wu, F. R. Gu, and H. W. Tsao, "Jitter performance analysis of SOCDMA-based EPON using perfect difference codes," IEEE J. Lightwave Technol., vol. 22, pp. 1309-1319, May 2004.
[9] A. Stok and E. H. Sargent, "The role of optical CDMA in access networks," IEEE Commun. Mag., vol. 40, pp. 83-87, Sep. 2002.
[10] “Broadband optical access systems based on passive optical networks (PON),” ITU-T, Recommendation G. 983.1, 1998.
[11] T. J. Chan, C. K. Chan, L. K. Chen, and F. Tong, “A self-protected architecture for wavelength division multiplexed passive optical networks,” IEEE photonics Technology Letters, vol. 15, no. 11, pp. 1660-1662, Nov. 2003.
[12] C. M. Lee, T. J. Chan, C. K. Chan, L. K. Chen, and C. Lin, “A group protection architecture for traffic restoration in multi-wavelength passive optical networks,” European Conference on Optical Communication (ECOC), pp. Th2.4.2, 2003.
[13] Z. X. Wang, X. F. Sun, C. L. Lin, C. K. Chan, and L. K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photonics Technology Letters, vol. 17, no. 3, pp. 717-719, Mar. 2005.
[14] C. C. Sue, “A Novel 1:N Protection Scheme for WDM Passive Optical Networks, ”IEEE Photonics Technology Letters, vol. 18, no. 13, pp. 1472-1474, July 2006.(SCI)
[15] C. C. Sue, “1: N Protection Scheme for AWG-based WDM PONs”, IEEE Globecom, San Francisco, pp. OPN01-1, Dec. 2006.
[16] X. Sun, C.K. Chan, L.K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photonics Technology Letters, vol. 18, no. 4, pp. 631–633, Feb. 2006
[17] N. Karafolas and D. Uttamchandani, “Optical Fiber code Division Multiple Access Networks: A Review,” Optical Fiber Technology, vol. 2, pp. 149-168, April 1996.
[18] C. C. Yang, J. F. Huang, and S. P. Tseng, “Optical CDMA Network Codecs Structured with M-sequence Codes over Waveguide-Grating Routers,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 641-643, Feb. 2004.
[19] J. F. Huang, Y. T. Chang and C. C. Hsu, “Hybrid WDM and optical CDMA implemented over waveguide- grating-based fiber-to-the-home networks,” Optical Fiber Technology, vol. 13 no. 3, pp. 215–225, July. 2007.
[20] C. J. Chae and R. S. Tucker, “Passive Virtual Optical Networking Technique Using a Cyclic N×N Arrayed Waveguide Grating for Multiple Multihop Ring Networks,” IEEE Photonics Technology Letters, vol. 16, no. 3, pp. 948-950, March 2004.
[21] H. Takahashi, S. Suzuki, K. Katoh, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Letter, vol. 26, pp. 87-88, 1990.
[22] C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” Photon Technol. Letter, vol. 3, pp. 896-899, 1991.
[23] H. Takahashi, and Y. Hibino, “Arrayed-waveguide grating wavelength multiplexers fabricated with flame hydrolysis deposition,” in Dig. 4th Optoelectronics Conf., IECIE, Japan, 1992, Paper 17C1-3.
[24] H. Takahashi, K. Oda, H. Toba, and Y. Inoue, "Transmission characteristics of arrayed-wave-guide N×N wavelength multiplexer," IEEE J. Lightwave Technol., vol. 13, pp. 447-455, Mar 1995.
[25] B. Vidal, D. Madrid, J. L. Corral, and J. Marti, “Novel Photonic True-Time-Delay Beamformer Based on the Free-Spectral-Range Periodicity of Arrayed Waveguide Gratings and Fiber Dispersion,” IEEE Photon. Technol., vol. 14, pp. 1614-1616, Nov. 2002.
[26] C. Bock, J. Prat, and S. D. Walker, “Hybrid WDM/TDM PON Using the AWG FSR and Featuring Centralized Light Generation and Dynamic Bandwidth Allocation”, IEEE J. Lightwave Technol., vol. 23, Dec. 2005.
[27] A. Banerjee, Y. Pary, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited],” Journal of Optical Networking., vol. 4, no. 11, pp. 824–833, Nov. 2005.
[28] Z. Wei, H.M.H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitue-coding optical CDMA systems,” IEEE J. Lightwave Technol., vol. 19, pp. 1274-1281, Sep. 2001.
[29] E.D.J. Smith, R.J. Blaikie, and D.P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol. 46, pp. 1176-1185, Sept. 1998.