簡易檢索 / 詳目顯示

研究生: 吳佩倫
Wu, Pei-Lun
論文名稱: 人工智慧應用於短期國道交通流量預測之研究
An Artificial Intelligence Model for Short-term Traffic Flow Prediction in Expressway
指導教授: 林東盈
Lin, Dung-Ying
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 82
中文關鍵詞: 短期交通流量預測深度學習長短期記憶神經網路門控循環單元網路時序卷積網路TDCS實證
外文關鍵詞: Short-term Traffic Flow Prediction, Deep Learning, Long Short-term Memory Neural Network, Gated Recurrent Unit Network, Temporal Convolutional Network, TDCS
相關次數: 點閱:153下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 短期交通流量預測之議題已發展多年,為了改善預測準確度,許多研究嘗試以不同之方法預測,目標為貼近真實資料。相較於傳統統計方法建構模型,深度學習之技術能達到更精準之預測,因此本研究藉由長短期記憶神經網路(Long Short-term Memory Neural Network, LSTM NN),門控循環單元網路(Gated Recurrent Unit Network, GRU)與時序卷積網路(Temporal Convolutional Networks, TCN)模型預測流量,並以交通部所提供之「高速公路電子收費交通資料蒐集支援系統」(Traffic Data Collection System, TDCS)數據來實證模型。首先將資料整理成歷史流量之時間序列作為輸入,並調整模型中之超參數(hyper-parameters)讓根均方誤差(Root Mean Squared Error, RMSE)達到收斂, 進而依不同的車種預測未來5分鐘之短期交通流量。結果顯示,此模型與真實資料擬合情況良好,且模型具有同時預測時間及空間之能力,能夠貼近真實交通情況,並由於時序卷積網路模型運算速度大幅優於其他兩個模型,故推論此模型為三者中最佳之預測流量模型。

    Studies of short-term traffic flow prediction have been conducted for many years. Many studies with different models and algorithms have been proposed to improve prediction accuracy. Deep learning has proved to have a higher accuracy than traditional statistics analyses. As a result, this study proposes traffic flow prediction models based on long short-term memory neural network (LSTM NN), Gated Recurrent Unit Network (GRU), and Temporal Convolutional Networks (TCN). The data in this research is derived from Traffic Data Collection System (TDCS) in Taiwan, and the historical time series of traffic flows are adopted as input. Then traffic flow of different types of vehicles for 5 minutes in the future are predicted by proposed models. The empirical results show that the prediction data fit the true data well using all of the proposed models, which could be used to predict spatial-temporal traffic flow from actual traffic conditions. In conclusion, the TCN performs best because of its computational efficiency.

    Table of Contents List of Tables vi List of Figures viii 1. INTRODUCTION 1 1.1 Research Background and Motivation 1 1.2 Research Objectives 3 1.3 Research Flow Chart 4 2. LITERATURE REVIEW 6 2.1 Review of Short-term Traffic Flow Prediction 6 2.2.1 Parameter model 7 2.2.2 Non-Parameter model 7 2.2 Review of Neural Networks in Transportation 8 2.2.1 Recurrent Neural Network 9 2.2.2 Convolutional Neural Network 11 3. METHODOLOGY 19 3.1 Long Short-term Memory Network 19 3.1.1 Long Short-term Memory Network Mathematical Notations 22 3.1.2 Long Short-term Memory Network Mathematical Formulation 24 3.2 Gated Recurrent Unit Network 29 3.2.1 Gated Recurrent Unit Network Mathematical Notations 31 3.2.2 Gated Recurrent Unit Network Mathematical Formulation 33 3.3 Temporal Convolutional Network 36 3.3.1 Causal Convolutions 37 3.3.2 Dilated Convolutions 37 3.3.3 1-D Fully-Convolutional Network 38 3.3.4 Residual Block 40 3.4 Summary 41 4. EMPIRICAL STUDY 43 4.1 Data Collection 43 4.2 Models Parameters and Hyper-parameters 45 4.3 Validation 47 4.4 Results 49 4.4.1 Overall Results 50 4.4.2 Results by various vehicle types 55 4.4.3 Results by each toll gates 60 5. DISCUSSION 64 5.1 Temporal Sensitivity Analysis 64 5.2 Effect of Spatial Dependency 65 5.3 Effect of Extra Information 66 5.4 Optimize Models with Optimal Input Data 67 5.5 Effect of Spatial Dependency with Single Toll gate 68 5.6 Effect of the Data Scale 73 5.7 Comparison with Support Vector Regression Model 76 5.8 Comparison with Dedicated Holiday Flow Prediction 76 6. CONCLUDING REMARKS 78 REFERENCE 81

    REFERENCES
    [1] Bai, S., et al. (2018) An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv e-prints
    [2] Bottou, L. J. O.-l. l. i. n. n. (1998). Online learning and stochastic approximations. On-line learning in neural networks, Cambridge University Press 17: 142.
    [3] Box, G. E. P. and G. M. Jenkins (1976). Time series analysis : forecasting and control / George E.P. Box and Gwilym M. Jenkins. San Francisco, Holden-Day.
    [4] Cho, K., et al. (2014) Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv e-prints
    [5] Fu, R., et al. (2016). Using LSTM and GRU neural network methods for traffic flow prediction. Chinese Association of Automation (YAC), Youth Academic Annual Conference of, IEEE.
    [6] Fukushima, K. and S. Miyake (1982). "Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position." Pattern Recognition 15(6): 455-469.
    [7] Goodfellow, I., et al. (2016). Deep learning, MIT press Cambridge.
    [8] He, K., et al. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
    [9] Hochreiter, S. and J. J. N. c. Schmidhuber (1997). "Long short-term memory." Neural Comput 9(8): 1735-1780.
    [10] Karpathy, A., et al. (2014). Large-scale video classification with convolutional neural networks. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.
    [11] Kim, W. K., et al. (2017). "A Study of Deep CNN-Based Classification of Open and Closed Eyes Using a Visible Light Camera Sensor." Sensors 17(7).
    [12] LeCun, Y., et al. (2010). Convolutional networks and applications in vision.
    Proceedings of 2010 IEEE International Symposium on Circuits and Systems.
    [13] Lippi, M., et al. (2013). "Short-Term Traffic Flow Forecasting: An Experimental Comparison of Time-Series Analysis and Supervised Learning." IEEE Transactions on Intelligent Transportation Systems 14(2): 871-882.
    [14] Lv, Y., et al. (2015). "Traffic Flow Prediction With Big Data: A Deep Learning Approach." IEEE Transactions on Intelligent Transportation Systems 16(2): 865-873.
    [15] Ma, X., et al. (2015). "Long short-term memory neural network for traffic speed prediction using remote microwave sensor data." Transportation Research Part C: Emerging Technologies 54: 187-197.
    [16] Ministry-of-Transportation-and-Communications, F. B. (2018). "ETC Operating Statistics." Retrieved 0830, 2018, from https://www.freeway.gov.tw/etc/publish.aspx?NID=1949&P=4933.
    [17] Ministry-of-Transportation-and-Communications, F. B. (2018). "Traffic Data Collection System (TDCS)." Retrieved 0701, 2018, from http://tisvcloud.freeway.gov.tw/history/TDCS/.
    [18] Polson, N. G. and V. O. Sokolov (2017). "Deep learning for short-term traffic flow prediction." Transportation Research Part C: Emerging Technologies 79: 1-17.
    [19] Ramos, C., et al. (2008). "Ambient Intelligence—the Next Step for Artificial Intelligence." IEEE Intelligent Systems 23(2): 15-18.
    [20] Scherer, D., et al. (2010). Evaluation of pooling operations in convolutional architectures for object recognition. Artificial Neural Networks–ICANN 2010, Springer: 92-101.
    [21] Sivaraman, S. and M. M. Trivedi (2010). "A General Active-Learning Framework for On-Road Vehicle Recognition and Tracking." IEEE Transactions on Intelligent Transportation Systems 11(2): 267-276.
    [22] Sutskever, I., et al. (2011). Generating text with recurrent neural networks. Proceedings of the 28th International Conference on Machine Learning (ICML-11).
    [23] Szegedy, C., et al. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition.
    [24] Tian, Y. and L. Pan (2015). Predicting short-term traffic flow by long short-term memory recurrent neural network. Smart City/SocialCom/SustainCom (SmartCity), 2015 IEEE International Conference on, IEEE.
    [25] Van Lint, J., et al. (2002). "Freeway travel time prediction with state-space neural networks: modeling state-space dynamics with recurrent neural networks." Transportation Research Record(1811): 30-39.
    [26] Vedaldi, A. and K. Lenc (2015). Matconvnet: Convolutional neural networks for matlab. Proceedings of the 23rd ACM international conference on Multimedia, ACM.
    [27] Wenger, E. (1987). Artificial intelligence and tutoring systems: computational and cognitive approaches to the communication of knowledge, Morgan Kaufmann.
    [28] Williams, B. M. and L. A. J. J. o. t. e. Hoel (2003). "Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results." Journal of Transportation Engineering 129(6): 664-672.
    [29] Wu, Y., et al. (2018). "A hybrid deep learning based traffic flow prediction method and its understanding." Transportation Research Part C: Emerging Technologies 90: 166-180.
    [30] Yu, H., et al. (2017). "Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks." Sensors 17(7).
    [31] Zhang, D. and M. R. Kabuka (2017). Combining Weather Condition Data to Predict Traffic Flow: A GRU Based Deep Learning Approach. 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech).
    [32] Zhang, Y. and G. Huang (2018). "traffic flow prediction model based on deep belief network and genetic algorithm." IET Intelligent Transport Systems 12(6): 533-541.
    [33] Zhao, Z., et al. (2017). "LSTM network: a deep learning approach for short-term traffic forecast." IET Intelligent Transport Systems 11(2): 68-75.
    [34] Zhou, S., et al. (2016). "Spatial–temporal convolutional neural networks for anomaly detection and localization in crowded scenes." Signal Processing: Image Communication 47: 358-368.

    無法下載圖示 校內:2025-01-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE