| 研究生: |
莊雅晴 Chuang, Ya-Ching |
|---|---|
| 論文名稱: |
氟化鈉對牙科瓷釉抗齲性質之影響 Effects of sodium fluoride on anti-caries property of dental glaze |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 牙科釉藥 、氟化鈉 、抗齲性質 、氧化鋯 |
| 外文關鍵詞: | dental glaze, sodium fluoride, anti-caries property, zirconia |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從18世紀以來,人類便懂得使用氟化物預防齲齒,雖然科學家對於氟離子抗齲機制尚未完全明瞭,但如今越來越多報導顯示,長期使牙齒周遭唾液含低濃度氟離子是最有效的抗齲方法。研發出能夠釋放氟離子之牙科修復物是當今熱門的研究方向,但此領域之研究大多著重於溝隙封填劑之改質,尚未有人將此法運用於瓷牙冠。瓷牙冠失效的原因有50 %是源自於二次齲齒,若瓷牙冠最外層之牙瓷釉藥能夠長期釋出氟離子預期將能減少二次齲齒的問題。
本研究欲藉由改質釉粉來降低瓷牙冠下的真牙發生齲齒的機率,但於此同時,改質釉粉所燒製出的釉層試樣也需有足夠的透明度、光滑度及硬度,如此才適用於臨床。本研究以1 wt%、5 wt%和10 wt%氟化鈉熔入商用牙科釉粉,探討各釉粉試樣之氟離子含量、氟離子釋放量及其微觀結構之變化,並藉由提升燒釉溫度及燒製時間,探討不同的改質釉粉及燒釉流程對燒製出的釉層之粗糙度、氣泡含量、微硬度及色澤之影響。研究結果顯示以5 wt%氟化鈉混入商業牙科釉粉,於650 ℃煆燒2小時再於1000 ℃熔融2小時所得之改質釉粉較少氟離子與氫化合成氟化氫而逸散,故其殘存的氟含量最高,氟離子釋放量亦最多;釉粉微觀結構顯示隨氟化鈉添加量越多其網狀交連度越低,釉粉的軟化點也隨之降低。商用牙科釉粉及以1 wt%、5 wt%和10 wt%氟化鈉熔製之改質釉粉之軟化點分別為685 ℃、678 ℃、635 ℃和543 ℃。
在釉層的性質方面,燒釉溫度由820 ℃提升至900 ℃並持溫15分鐘將減少釉層表面粗糙度;5 wt%和10 wt%氟化鈉熔製之改質釉粉以900 ℃並持溫15分鐘的燒釉流程燒製將能得到氣泡最少之釉層試樣;諸改質釉粉以兩種燒製流程所燒製出之釉層試樣其微硬度皆略低於原始釉粉以820 ℃所燒製出之釉層;5 wt%和10 wt%氟化鈉熔製之改質釉粉以820 ℃燒製將會碳素殘留導致釉層色澤偏黑,若燒釉溫度提升至900 ℃並持溫15分鐘碳素含量將顯著減少而可得到透亮之釉層試樣。
總的來說,5 wt%氟化鈉熔製之改質釉粉以900 ℃並持溫15分鐘的燒釉流程燒製出的釉層最符合本研究的目的。
The objectives of this study had two (a) decreasing the secondaries anti-caries probability of monolithic zirconia crown and (b) obtaining smooth and transparent glaze. To achieve the first objective, the strategy was to modify glaze powders and made it able to release more fluoride ions. As for the second objective, the strategy was adjusting the firing process of manufacture’s suggestion. Modified glaze powders were fabricated by mixing 1, 5 and 10 wt% sodium fluoride with commercial glaze powder. These mixture powders were calcined at 650 ℃ for 2 h and then melted at 1000 ℃ for 2 h to make them become amorphous and homogeneous glaze frits. These glaze frits were ground and sieved to form modified glaze powders. These modified glaze powders were fired by two kinds of firing processes. Original firing process was firing at 820 ℃, and the adjusting one was firing at 900 ℃ and holding for 15 minutes. The fluoride release amounts, roughness and transparency were measured by fluoride ion selective electrode, surface roughness measuring instrument, and colorimeter. The microstructure and crystal structure were observed by SEM and XRD. The results indicated that the modified glaze powders were amorphous, and 5NaF glaze powder released the most amount of fluoride ions. Adjusting firing process would obtain smoother and more transparent glaze than original firing process. To sum up, 5NaF 900 glaze sample had better anti-caries effect and its surface was smooth and transparent, simultaneously.
[1] M.V. Swain, Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures, Acta Biomater, 5, 1668-1677 (2009).
[2] A.C. Diniz, R.M. Nascimento, J.C. Souza, B.B. Henriques, A.F. Carreiro, Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia, Materials Science and Engineering C: Materials for Biological Applications, 38, 79-84 (2014).
[3] F. Zarone, R. Sorrentino, T. Traini, D. Di lorio, S. Caputi, Fracture resistance of implant-supported screw-versus cement-retained porcelain fused to metal single crowns: SEM fractographic analysis, Dental Materials, 23, 296-301 (2007).
[4] I.A. MJÖR, Clinical diagnosis of recurrent caries, The Journal of the American Dental Association, 136, 1426-1433 (2005).
[5] 洪純成, 牙科陶瓷技術學, 合記圖書出版社, 新北市 (2015).
[6] A. Salakhov, O. Spirina, V. Remiznikova, V. Khozin, Low-melting glaze for structural ceramics, Glass and Ceramics, 58, 174-175 (2001).
[7] M. Tite, M. Bimson, Faience: an investigation of the microstructures associated with the different methods of glazing, Archaeometry, 28, 69-78 (1986).
[8] B. Øgaard, G. Rølla, J. Arends, Orthodontic appliances and enamel demineralization: Part 1. Lesion development, American Journal of Orthodontics and Dentofacial Orthopedics, 94, 68-73 (1988).
[9] K. Rošin-Grget, I. Linčir, Current concept on the anticaries fluoride mechanism of the action, Collegium Antropologicum, 25, 703-712 (2001).
[10] M. RYBERG, G. MÖLLER, T. ERIGSON, Saliva composition and caries development in asthmatic patients treated with β2‐adrenoceptor agonists: a 4‐year follow‐up study, European Journal of Oral Sciences, 99, 212-218 (1991).
[11] J.L. Chicharro, A. Lucía, M. Pérez, A.F. Vaquero, R. Ureña, Saliva composition and exercise, Sports Medicine, 26, 17-27 (1998).
[12] J. Arends, J. Ten Cate, Tooth enamel remineralization, Journal of Crystal Growth, 53, 135-147 (1981).
[13] P.P.E.D. J. M. ten Cate, Influence of fluoride in solution on tooth demineralization, Caries Research, 17, 193-199 (1983).
[14] J. Ten Cate, P. Duijsters, Alternating demineralization and remineralization of artificial enamel lesions, Caries Research, 16, 201-210 (1982).
[15] J.F. Volker, H.C. Hodge, H.J. Wilson, S.N. Van Voorhis, The adsorption of fluorides by enamel, dentin, bone, and hydroxyapatite as shown by the radioactive isotope, Journal Of Biological Chemistry, 134, 543-548 (1940).
[16] J.M.t. Cate, Mechanistic aspects of the interactions between fluoride and dental enamel, Oral Biology and Medicine, 2, 283-296 (1991).
[17] I. Hamilton, Biochemical effects of fluoride on oral bacteria, Journal of Dental Research, 69, 660-667 (1990).
[18] S. Twetman, S. Axelsson, H. Dahlgren, A.K. Holm, C. Källestål, F. Lagerlöf, P. LingstroÈm, I. Mejàre, G. Nordenram, A. Norlund, Caries‐preventive effect of fluoride toothpaste: a systematic review, Acta Odontologica Scandinavica, 61, 347-355 (2003).
[19] V. Marinho, J. Higgins, A. Sheiham, S. Logan, Combinations of topical fluoride (toothpastes, mouthrinses, gels, varnishes) versus single topical fluoride for preventing dental caries in children and adolescents, Cochrane Library (2004).
[20] G. Pizzo, M. Piscopo, I. Pizzo, G. Giuliana, Community water fluoridation and caries prevention: a critical review, Clinical Oral Investigations, 11, 189-193 (2007).
[21] R. Maheshwari, Fluoride in drinking water and its removal, Journal of Hazardous Materials, 137, 456-463 (2006).
[22] S. Yoon, F. Brudevold, D.E. Gardner, F.A. Smith, Distribution of fluoride in teeth from areas with different levels of fluoride in the water supply, Journal of Dental Research, 39, 845-856 (1960).
[23] F. Wondwossen, A.N. Åstrøm, K. Bjorvatn, A. Bårdsen, The relationship between dental caries and dental fluorosis in areas with moderate‐and high‐fluoride drinking water in Ethiopia, Community Dentistry and Oral Epidemiology, 32, 337-344 (2004).
[24] K. Bansal, K. Gauba, A. Tewari, H. Chawla, A. Sahni, In vivo remineralization of artificial enamel carious lesions using a mineral-enriched mouthrinse and a fluoride dentifrice: a polarized light microscopic comparative evaluation, Journal of Indian Society of Pedodontics and Preventive Dentistry, 28, 264 (2010).
[25] H. Margolis, E. Moreno, B. Murphy, Effect of low levels of fluoride in solution on enamel demineralization in vitro, Journal of Dental Research, 65, 23-29 (1986).
[26] J.R. Mellberg, L. Ripa, G. Leske, Fluoride in preventive dentistry, Quintessence Publishing (IL), (1983).
[27] J.T. Cate, In vitro studies on the effects of fluoride on de-and remineralization, Journal of Dental Research, 69, 614-619 (1990).
[28] W. Brown, T. Gregory, L. Chow, Effects of fluoride on enamel solubility and cariostasis, Caries Research, 11, 118-141 (1977).
[29] J. Featherstone, R. Glena, M. Shariati, C. Shields, Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration, Journal of Dental Research, 69, 620-625 (1990).
[30] N. Cochrane, F. Cai, N. Huq, M. Burrow, E. Reynolds, New approaches to enhanced remineralization of tooth enamel, Journal of Dental Research, 89, 1187-1197 (2010).
[31] E. Hellwig, A.M. Lennon, Systemic versus topical fluoride, Caries Research, 38, 258-262 (2004).
[32] C.M.L. Bollenl, Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature, Dental Materials, 13, 258-269 (1997).
[33] M. Quirynen, C. Bollen, The influence of surface roughness and surface‐free energy on supra‐and subgingival plaque formation in man: A review of the literature, Journal of Clinical Periodontology, 22, 1-14 (1995).
[34] W.H. Zachariasen, The atomic arrangement in glass, Journal of the American Chemical Society, 54, 3841-3851 (1932).
[35] R. Brückner, M. Tylkowski, L. Hupa, D.S. Brauer, Controlling the ion release from mixed alkali bioactive glasses by varying modifier ionic radii and molar volume, Journal of Materials Chemistry B, 4, 3121-3134 (2016).
[36] H. Melman, S. Garofalini, Microstructural evaluation of simulated sodium silicate glasses, Journal of Non-crystalline Solids, 134, 107-115 (1991).
[37] R. Hill, An alternative view of the degradation of bioglass, Journal of Materials Science Letters, 15, 1122-1125 (1996).
[38] P. Dumas, J. Corset, Y. Levy, V. Neuman, Raman spectral characterization of pure and fluorine‐doped vitreous silica material, Journal of Raman Spectroscopy, 13, 134-138 (1982).
[39] E.M. Rabinovich, Structural role of fluorine in silicate glasses, Physics and Chemistry of Glasses, 24, 54-56 (1983).
[40] C. Bocker, I. Avramov, C. Rüssel, Viscosity and diffusion of barium and fluoride in Na2O/K2O/Al2O3/SiO2/BaF2 glasses, Chemical Physics, 369, 96-100 (2010).
[41] J.C. Dyre, T. Christensen, N.B. Olsen, Elastic models for the non-Arrhenius viscosity of glass-forming liquids, Journal of Non-crystalline Solids, 352, 4635-4642 (2006).
[42] J.D.B. Featherstone, Prevention and reversal of dental : role of low level fluoride, Community Dent Oral Epidemiol 27, (1999).
[43] J.M.t. Cate, Current concepts on the theories of the mechanism of action of fluoride, Acta Odontologica Scandinavica, 57, 325-329 (1999).
[44] G. Lusvardi, G. Malavasi, F. Tarsitano, L. Menabue, M.C. Menziani, A. Pedone, Quantitative structure− property relationships of potentially bioactive fluoro phospho-silicate glasses, The Journal of Physical Chemistry B, 113, 10331-10338 (2009).
[45] G. Napoli, M. Paura, T. Vela, A.D. Schino, Colouring titanium alloys by anodic oxidation, Metalurgija, 57, 111-113 (2018).
[46] A. Yadav, A. Nishikata, T. Tsuru, Effect of halogen ions on platinum dissolution under potential cycling in 0.5 M H2SO4 solution, Electrochimica Acta, 52, 7444-7452 (2007).
[47] A.I. Zaitsev, A.V. Leites, A.D. Lrtvina, B.M. Mogutnov, Investigation of the mould powder volatiles during continuous casting, Steel Research, 65, 368-374 (1994).
[48] M. Persson, S. Seetharaman, S. Seetharaman, Kinetic studies of fluoride evaporation from slags, ISIJ International, 47, 1711-1717 (2007).
[49] M. Leśniak, M. Gajek, J. Partyka, M. Sitarz, Structure and thermal properties of the fritted glazes in SiO2–Al2O3–CaO–MgO–Na2O–K2O–ZnO system, Journal of Thermal Analysis and Calorimetry, 130, 165-176 (2017).
[50] M. Criado, A. Fernández-Jiménez, A. Palomo, Alkali activation of fly ash: Effect of the SiO2/Na2O ratio: Part I: FTIR study, Microporous and Mesoporous materials, 106, 180-191 (2007).
[51] H. Yamazaki, Y. Ishikawa, M. Fujii, Y. Ueoka, M. Fujiwara, E. Takahashi, Y. Andoh, N. Maejima, H. Matsui, F. Matsui, The influence of fluorinated silicon nitride gate insulator on positive bias stability toward highly reliable amorphous InGaZnO thin-film transistors, ECS Journal of Solid State Science and Technology, 3, 20-23 (2014).
[52] C. Chuenarrom, P. Benjakul, P. Daosodsai, Effect of indentation load and time on knoop and vickers microhardness tests for enamel and dentin, Materials Research, 12, 473-476 (2009).