| 研究生: |
曾千航 Tseng, Chien-Hang |
|---|---|
| 論文名稱: |
脂多醣經由腫瘤壞死因子受體-1之訊息傳遞路徑惡化缺氧窒息所導致的幼鼠腦傷 Lipopolysaccharide Sensitizes Hypoxic-ischemia Injury in the Immature Brain through Tumor Necrosis Factor Receptor 1 Signaling |
| 指導教授: |
黃朝慶
Huang, Chao-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 新生兒 、缺氧窒息 、血腦屏障 、發炎反應 、腫瘤壞死因子受體1 |
| 外文關鍵詞: | Neonate, Hypoxic-ischemia, Blood-brain barrier, Inflammation, TNFR-1 |
| 相關次數: | 點閱:132 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據流行病學的研究顯示,感染所引起的發炎反應以及缺氧窒息傷害,是造成早產兒腦傷的兩個重要且危險的因子。在臨床上卻發現,這兩個危險因子非常容易一併發生在早產兒身上,是否將導致更嚴重的腦部傷害則為現今迫切需要釐清的議題。為了研究這兩種因子在發育中大腦所扮演的角色,科學家建立動物模式,利用細菌細胞壁上的脂多醣 (LPS) 來模擬感染所引起的發炎反應,或以單側頸動脈結紮合併缺氧來模擬缺氧窒息所造成的腦部傷害。文獻紛紛指出,感染或是缺氧窒息事件的刺激之下,將容易誘發神經發炎,血腦屏障的破壞以及細胞凋亡的情形,進而讓發育未成熟的大腦受到嚴重的波及。本實驗室過去也建立了大鼠的幼鼠動物模式,發現給予低劑量 (0.05 mg/kg) 脂多醣的處理後,原本受到缺氧窒息所呈現的腦部傷害卻更加的惡化。然而,目前在發育未成熟大腦中探討由感染與缺氧窒息所誘發的神經發炎,血腦屏障破壞以及細胞凋亡等機制的研究並不是很多,倘若欲更深入於治療,則需更進一步了解其機轉。因此,建立一有利於機轉探討的小鼠幼鼠動物模式更是個刻不容緩的課題。臨床上發現,腫瘤壞死因子 (TNF-) 與受到感染或者是缺氧窒息傷害的早產兒息息相關。腫瘤壞死因子會透過腫瘤壞死因子受體1 (TNFR1) 以及腫瘤壞死因子受體2 (TNFR2) 來傳遞其訊息路徑。然而,此兩種受體所引領的訊息路徑卻可能造成細胞存活或者是細胞死亡兩種迥然不同的結果。過去研究顯示,在感染或缺氧窒息所引發的腦部傷害當中,腫瘤壞死因子及其受體可能部分參予了神經發炎,血腦屏障破壞以及細胞凋亡的機轉,但在於幼鼠腦傷的角色中有些機轉卻未多做著墨。另外,在感染或缺氧窒息的刺激之下,腫瘤壞死因子兩種受體在於幼鼠腦傷的個別作用仍有待釐清。
過去的文獻指出,在腦部神經細胞的表現上,腫瘤壞死因子受體1相較於腫瘤壞死因子受體2更加明確。也因此,我們大膽假設腫瘤壞死因子受體1的訊息傳遞路徑,會透過神經發炎,血腦屏障破壞以及細胞凋亡的機轉,在感染所惡化的缺氧窒息幼鼠腦傷當中,扮演著一關鍵性的角色。本實驗利用出生後五天的小鼠(腦部發育情形相當於人類小於三十二週大的早產兒),在缺氧後第12天,確實發現低劑量 (0.05 mg/kg) 的脂多醣更加惡化了灰質以及白質的傷害。並且,在缺氧後的24小時,神經發炎,血腦屏障破壞以及細胞凋亡的情形都受到低劑量脂多醣的惡化。本實驗接續比較了野生型 (wild-type),腫瘤壞死因子受體1基因剔除型 (TNFR1-knockout),腫瘤壞死因子受體2基因剔除型 (TNFR2-knockout) 的幼鼠在缺氧後12天的腦傷情形,發現在合併脂多醣以及缺氧窒息刺激之下,腫瘤壞死因子受體1基因剔除型的幼鼠,不論是在皮質或者是白質都呈現比較保護的趨勢。而在缺氧後24小時也觀察到神經發炎,血腦屏障破壞以及細胞凋亡情形在腫瘤壞死因子受體-1基因剔除型幼鼠中受到了保護。爾後,本實驗利用聚合酶連鎖反應陣列 (PCR array) 掃描84個與腫瘤壞死因子配體和受體超家族 (TNF- ligand and receptor superfamily) 相關的基因。結果顯示,經過脂多醣和缺氧窒息的刺激之下,野生型以及腫瘤壞死因子受體-2基因剔除型幼鼠在缺氧後6小時,TWEAK-R的mRNA表現量皆有顯著上升 (P<0.05); 但此現象在腫瘤壞死因子受體1基因剔除型幼鼠卻受到了抑制。而在蛋白質表現量的評估上,我們同樣也觀察到腫瘤壞死因子受體-1基因剔除型幼鼠即使受到了脂多醣和缺氧窒息的刺激,其TWEAK-R的表現量仍無顯著上升。總而言之,本實驗成功建立了脂多醣惡化缺氧窒息幼鼠腦傷的小鼠動物模式,並證實腦傷情形是透過腫瘤壞死因子受體1的訊息傳遞路徑引起神經發炎,血腦屏障破壞以及細胞凋亡的機轉所致。另外,腫瘤壞死因子受體1可能亦參與著TWEAK-R的調控。因此,本研究首次證實腫瘤壞死因子受體1在感染合併缺氧窒息的幼鼠腦傷中扮演著關鍵性的角色。
Epidemiological studies have shown that hypoxic-ischemia (HI) and infection/inflammation are the two major risk factors for brain injury in preterm infants. Inflammation might predispose to or act in concert with HI in premature infants. Substantial evidence has documented that neuroinflammation, blood-brain barrier (BBB) damage and neuronal apoptosis, which triggered from lipopolysaccharide (LPS) or HI, account for the vulnerability of the developing brain. Our lab has demonstrated that LPS could sensitize HI injury in immature rat brain. However, it is necessary to establish a mice model to elaborate the detail mechanism. Moreover, little is known about the combined effects of LPS and HI on neuroinflammation, BBB damage and neuronal apoptosis in the immature brain. Tumor necrosis factor-alpha (TNF-), a pleiotropic cytokine mediating inflammation and cell death, has been demonstrated to play an important role in immature brain injury. TNF- exerts its biological functions mainly through binding to its two cell-surface receptors, the p55/p60 TNF receptor-1 (TNFR-1) and the p75/p80 (TNFR-2). Whereas most of the biological effects induced by TNF- have been attributed to TNFR-1 and TNFR-2, the individual effect of TNFR-1 or TNFR-2 is still unclear after LPS and HI injury in the immature brain.
Previous studies have shown that TNFR-1 is more dominant than TNFR2 in neurons. We, therefore, hypothesized that TNFR-1 signaling plays the major role in LPS-induced sensitization of HI injury in the immature brain through upregulation of neuroinflammation, BBB damage and neuronal apoptosis. Using postnatal day-5 mouse pups, we found that LPS significantly worsened HI injury in the cortex, striatum and white matter 12-day post-insult. The HI injury in the cortex was associated with increases of microglia activation and BBB damage, and upregulation of TNF-α and activated caspase-3 levels. Compared with wild-type mouse pups, TNFR1-knockout pups, but not TNFR2-knockout ones, had significantly less damage from LPS sensitization of HI injury in the cortex and white matter. The protective effect of TNFR-1 knockout was associated with attenuation of HI-induced microglia activation, BBB damage, and neuronal apoptosis. Furthermore, we analyzed changes of gene expression post-insult among wild-type, TNFR1-knockout and TNFR2-knockout mouse pups by profiling 84 genes of TNF ligand and receptor superfamily with polymerase chain reaction (PCR) microarray. HI induced significant upregulation of c-Jun and TWEAK-R (tumor necrosis factor-like weak inducer of apoptosis receptor). mRNA levels in wild-type and TNFR2-knockout group (P<0.05), but not in TNFR1-knockout group. In addition, TWEAK-R protein was inhibited in TNFR1-knockout pups compared to wild-type and TNFR2-knockout pups after HI insult. In conclusion, this study indicates that LPS sensitizes HI injury in the immature brain through TNFR-1 signaling-induced neuroinflammation, BBB disruption and neuronal apoptosis. TNFR-1 may play a role in TWEAK-R pathway. Selective inhibition of TNFR-1 signaling may represent a new approach to reduce LPS plus HI-induced neuronal damage in the immature brain.
Airede AI (1991) Birth asphyxia and hypoxic-ischaemic encephalopathy: incidence and severity. Ann Trop Paediatr 11:331-335.
Akassoglou K, Bauer J, Kassiotis G, Pasparakis M, Lassmann H, Kollias G, Probert L (1998) Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am J Pathol 153:801-813.
Akassoglou K, Douni E, Bauer J, Lassmann H, Kollias G, Probert L (2003) Exclusive tumor necrosis factor (TNF) signaling by the p75TNF receptor triggers inflammatory ischemia in the CNS of transgenic mice. Proc Natl Acad Sci U S A 100:709-714.
Akassoglou K, Probert L, Kontogeorgos G, Kollias G (1997) Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J Immunol 158:438-445.
Anslow P (1998) Birth asphyxia. Eur J Radiol 26:148-153.
Badiola N, Malagelada C, Llecha N, Hidalgo J, Comella JX, Sabria J, Rodriguez-Alvarez J (2009) Activation of caspase-8 by tumour necrosis factor receptor 1 is necessary for caspase-3 activation and apoptosis in oxygen-glucose deprived cultured cortical cells. Neurobiol Dis 35:438-447.
Barks JD, Liu YQ, Shangguan Y, Li J, Pfau J, Silverstein FS (2008) Impact of indolent inflammation on neonatal hypoxic-ischemic brain injury in mice. Int J Dev Neurosci 26:57-65.
Basovich SN (2010) The role of hypoxia in mental development and in the treatment of mental disorders: a review. Biosci Trends 4:288-296.
Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11:372-377.
Bebo BF, Jr., Linthicum DS (1995) Expression of mRNA for 55-kDa and 75-kDa tumor necrosis factor (TNF) receptors in mouse cerebrovascular endothelium: effects of interleukin-1 beta, interferon-gamma and TNF-alpha on cultured cells. J Neuroimmunol 62:161-167.
Blomgren K, Hagberg H (2006) Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic Biol Med 40:388-397.
Blomgren K, Zhu C, Wang X, Karlsson JO, Leverin AL, Bahr BA, Mallard C, Hagberg H (2001) Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of "pathological apoptosis"? J Biol Chem 276:10191-10198.
Bohatschek M, Kloss CU, Hristova M, Pfeffer K, Raivich G (2004) Microglial major histocompatibility complex glycoprotein-1 in the axotomized facial motor nucleus: regulation and role of tumor necrosis factor receptors 1 and 2. J Comp Neurol 470:382-399.
Cai Z, Pang Y, Lin S, Rhodes PG (2003) Differential roles of tumor necrosis factor-alpha and interleukin-1 beta in lipopolysaccharide-induced brain injury in the neonatal rat. Brain Res 975:37-47.
Chadwick W, Magnus T, Martin B, Keselman A, Mattson MP, Maudsley S (2008) Targeting TNF-alpha receptors for neurotherapeutics. Trends Neurosci 31:504-511.
Chang YC, Huang CC, Hung PL, Huang HM (2008) Rolipram, a phosphodiesterase type IV inhibitor, exacerbates periventricular white matter lesions in rat pups. Pediatr Res 64:234-239.
Chen W, Hartman R, Ayer R, Marcantonio S, Kamper J, Tang J, Zhang JH (2009) Matrix metalloproteinases inhibition provides neuroprotection against hypoxia-ischemia in the developing brain. J Neurochem 111:726-736.
Cheng Y, Deshmukh M, D'Costa A, Demaro JA, Gidday JM, Shah A, Sun Y, Jacquin MF, Johnson EM, Holtzman DM (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 101:1992-1999.
Chew LJ, Takanohashi A, Bell M (2006) Microglia and inflammation: impact on developmental brain injuries. Ment Retard Dev Disabil Res Rev 12:105-112.
Culpan D, Cornish A, Love S, Kehoe PG, Wilcock GK (2007) Protein and gene expression of tumour necrosis factor receptors I and II and their promoter gene polymorphisms in Alzheimer's disease. Exp Gerontol 42:538-544.
Dammann O, Leviton A (1997) Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res 42:1-8.
Dammann O, Leviton A (2004) Inflammatory brain damage in preterm newborns--dry numbers, wet lab, and causal inferences. Early Hum Dev 79:1-15.
Deguchi K, Mizuguchi M, Takashima S (1996) Immunohistochemical expression of tumor necrosis factor alpha in neonatal leukomalacia. Pediatr Neurol 14:13-16.
del Zoppo GJ (2009) Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 158:972-982.
del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Berg GI, Koziol JA (2007) Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke 38:646-651.
Deng W (2010) Neurobiology of injury to the developing brain. Nat Rev Neurol 6:328-336.
Deng Y, Lu J, Sivakumar V, Ling EA, Kaur C (2008) Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats. Brain Pathol 18:387-400.
Dobbie MS, Hurst RD, Klein NJ, Surtees RA (1999) Upregulation of intercellular adhesion molecule-1 expression on human endothelial cells by tumour necrosis factor-alpha in an in vitro model of the blood-brain barrier. Brain Res 830:330-336.
Dopp JM, Mackenzie-Graham A, Otero GC, Merrill JE (1997) Differential expression, cytokine modulation, and specific functions of type-1 and type-2 tumor necrosis factor receptors in rat glia. J Neuroimmunol 75:104-112.
Douni E, Kollias G (1998) A critical role of the p75 tumor necrosis factor receptor (p75TNF-R) in organ inflammation independent of TNF, lymphotoxin alpha, or the p55TNF-R. J Exp Med 188:1343-1352.
du Plessis AJ, Volpe JJ (2002) Perinatal brain injury in the preterm and term newborn. Curr Opin Neurol 15:151-157.
Dziewulska D, Mossakowski MJ (2003) Cellular expression of tumor necrosis factor a and its receptors in human ischemic stroke. Clin Neuropathol 22:35-40.
Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-Baltzer I, Hagberg H (2001) Bacterial endotoxin sensitizes the immature brain to hypoxic--ischaemic injury. Eur J Neurosci 13:1101-1106.
Fotin-Mleczek M, Henkler F, Samel D, Reichwein M, Hausser A, Parmryd I, Scheurich P, Schmid JA, Wajant H (2002) Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J Cell Sci 115:2757-2770.
Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29:357-365.
George Paxinos KBJF (2001) The Mouse Brain in Stereotaxic Coordinates.
Grell M, Wajant H, Zimmermann G, Scheurich P (1998) The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci U S A 95:570-575.
Griffiths MR, Gasque P, Neal JW (2009) The multiple roles of the innate immune system in the regulation of apoptosis and inflammation in the brain. J Neuropathol Exp Neurol 68:217-226.
Gutierrez EG, Banks WA, Kastin AJ (1993) Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 47:169-176.
Hagberg H, Mallard C (2005) Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol 18:117-123.
Haile WB, Echeverry R, Wu F, Guzman J, An J, Wu J, Yepes M (2010) Tumor necrosis factor-like weak inducer of apoptosis and fibroblast growth factor-inducible 14 mediate cerebral ischemia-induced poly(ADP-ribose) polymerase-1 activation and neuronal death. Neuroscience 171:1256-1264.
Haridas V, Darnay BG, Natarajan K, Heller R, Aggarwal BB (1998) Overexpression of the p80 TNF receptor leads to TNF-dependent apoptosis, nuclear factor-kappa B activation, and c-Jun kinase activation. J Immunol 160:3152-3162.
Hsu H, Shu HB, Pan MG, Goeddel DV (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299-308.
Kadhim H, Khalifa M, Deltenre P, Casimir G, Sebire G (2006) Molecular mechanisms of cell death in periventricular leukomalacia. Neurology 67:293-299.
Kadhim HJ, Duchateau J, Sebire G (2008) Cytokines and brain injury: invited review. J Intensive Care Med 23:236-249.
Kaukola T, Herva R, Perhomaa M, Paakko E, Kingsmore S, Vainionpaa L, Hallman M (2006) Population cohort associating chorioamnionitis, cord inflammatory cytokines and neurologic outcome in very preterm, extremely low birth weight infants. Pediatr Res 59:478-483.
Komatsu M, Mammolenti M, Jones M, Jurecic R, Sayers TJ, Levy RB (2003) Antigen-primed CD8+ T cells can mediate resistance, preventing allogeneic marrow engraftment in the simultaneous absence of perforin-, CD95L-, TNFR1-, and TRAIL-dependent killing. Blood 101:3991-3999.
Kuno R, Wang J, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A (2005) Autocrine activation of microglia by tumor necrosis factor-alpha. J Neuroimmunol 162:89-96.
Lambertsen KL, Clausen BH, Fenger C, Wulf H, Owens T, Dagnaes-Hansen F, Meldgaard M, Finsen B (2007) Microglia and macrophages express tumor necrosis factor receptor p75 following middle cerebral artery occlusion in mice. Neuroscience 144:934-949.
Lee HT, Chang YC, Tu YF, Huang CC (2009) VEGF-A/VEGFR-2 signaling leading to cAMP response element-binding protein phosphorylation is a shared pathway underlying the protective effect of preconditioning on neurons and endothelial cells. J Neurosci 29:4356-4368.
Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100:8514-8519.
Lesuisse C, Martin LJ (2002) Immature and mature cortical neurons engage different apoptotic mechanisms involving caspase-3 and the mitogen-activated protein kinase pathway. J Cereb Blood Flow Metab 22:935-950.
Liu ZG, Hsu H, Goeddel DV, Karin M (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87:565-576.
Lok J, Gupta P, Guo S, Kim WJ, Whalen MJ, van Leyen K, Lo EH (2007) Cell-cell signaling in the neurovascular unit. Neurochem Res 32:2032-2045.
Lucas R, Lou J, Morel DR, Ricou B, Suter PM, Grau GE (1997) TNF receptors in the microvascular pathology of acute respiratory distress syndrome and cerebral malaria. J Leukoc Biol 61:551-558.
MacEwan DJ (2002) TNF ligands and receptors--a matter of life and death. Br J Pharmacol 135:855-875.
Malaeb S, Dammann O (2009) Fetal inflammatory response and brain injury in the preterm newborn. J Child Neurol 24:1119-1126.
Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel UL (2004) Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem 279:32869-32881.
Markus T, Cronberg T, Cilio C, Pronk C, Wieloch T, Ley D (2008) Tumor necrosis factor receptor-1 is essential for LPS-induced sensitization and tolerance to oxygen–glucose deprivation in murine neonatal organotypic hippocampal slices. Journal of Cerebral Blood Flow and Metabolism 29:73-86.
Markus T, Cronberg T, Cilio C, Pronk C, Wieloch T, Ley D (2009) Tumor necrosis factor receptor-1 is essential for LPS-induced sensitization and tolerance to oxygen-glucose deprivation in murine neonatal organotypic hippocampal slices. J Cereb Blood Flow Metab 29:73-86.
Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181-190.
Miller F, Fenart L, Landry V, Coisne C, Cecchelli R, Dehouck MP, Buee-Scherrer V (2005) The MAP kinase pathway mediates transcytosis induced by TNF-alpha in an in vitro blood-brain barrier model. Eur J Neurosci 22:835-844.
Monier A, Evrard P, Gressens P, Verney C (2006) Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J Comp Neurol 499:565-582.
Muramatsu K, Fukuda A, Togari H, Wada Y, Nishino H (1997) Vulnerability to cerebral hypoxic-ischemic insult in neonatal but not in adult rats is in parallel with disruption of the blood-brain barrier. Stroke 28:2281-2288; discussion 2288-2289.
Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659-3668.
Nelson KB, Grether JK (1998) Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. Am J Obstet Gynecol 179:507-513.
Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314-1318.
Paintlia MK, Paintlia AS, Barbosa E, Singh I, Singh AK (2004) N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J Neurosci Res 78:347-361.
Pan W, Kastin AJ (2002) TNFalpha transport across the blood-brain barrier is abolished in receptor knockout mice. Exp Neurol 174:193-200.
Pan W, Kastin AJ (2003) Interactions of cytokines with the blood-brain barrier: implications for feeding. Curr Pharm Des 9:827-831.
Pan W, Kastin AJ (2007) Tumor necrosis factor and stroke: role of the blood-brain barrier. Prog Neurobiol 83:363-374.
Poets CF, Stebbens VA, Richard D, Southall DP (1995) Prolonged episodes of hypoxemia in preterm infants undetectable by cardiorespiratory monitors. Pediatrics 95:860-863.
Polavarapu R, Gongora MC, Winkles JA, Yepes M (2005) Tumor necrosis factor-like weak inducer of apoptosis increases the permeability of the neurovascular unit through nuclear factor-kappa B pathway activation. J Neurosci 25:10094-10100.
Potrovita I, Zhang W, Burkly L, Hahm K, Lincecum J, Wang MZ, Maurer MH, Rossner M, Schneider A, Schwaninger M (2004) Tumor necrosis factor-like weak inducer of apoptosis-induced neurodegeneration. J Neurosci 24:8237-8244.
Pulera MR, Adams LM, Liu H, Santos DG, Nishimura RN, Yang F, Cole GM, Wasterlain CG (1998) Apoptosis in a neonatal rat model of cerebral hypoxia-ischemia. Stroke 29:2622-2630.
Rauert H, Wicovsky A, Muller N, Siegmund D, Spindler V, Waschke J, Kneitz C, Wajant H (2010) Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J Biol Chem 285:7394-7404.
Rosenberg GA, Mun-Bryce S (2004) Matrix metalloproteinases in neuroinflammation and cerebral ischemia. Ernst Schering Res Found Workshop 1-16.
Roy M, Girard S, Larouche A, Kadhim H, Sebire G (2009) TNF-alpha system response in a rat model of very preterm brain injuries induced by lipopolysaccharide and/or hypoxia-ischemia. Am J Obstet Gynecol 201:493 e491-410.
Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137:47-59.
Schneider P, Schwenzer R, Haas E, Muhlenbeck F, Schubert G, Scheurich P, Tschopp J, Wajant H (1999) TWEAK can induce cell death via endogenous TNF and TNF receptor 1. Eur J Immunol 29:1785-1792.
Shen Y, Li R, Shiosaki K (1997) Inhibition of p75 tumor necrosis factor receptor by antisense oligonucleotides increases hypoxic injury and beta-amyloid toxicity in human neuronal cell line. J Biol Chem 272:3550-3553.
Sipe KJ, Dantzer R, Kelley KW, Weyhenmeyer JA (1998) Expression of the 75 kDA TNF receptor and its role in contact-mediated neuronal cell death. Brain Res Mol Brain Res 62:111-121.
Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, Higgins RD (2004) Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 292:2357-2365.
Stolp HB, Dziegielewska KM, Ek CJ, Potter AM, Saunders NR (2005) Long-term changes in blood-brain barrier permeability and white matter following prolonged systemic inflammation in early development in the rat. Eur J Neurosci 22:2805-2816.
Stolpen AH, Guinan EC, Fiers W, Pober JS (1986) Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers. Am J Pathol 123:16-24.
Svedin P, Hagberg H, Savman K, Zhu C, Mallard C (2007) Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J Neurosci 27:1511-1518.
Tsao N, Hsu HP, Wu CM, Liu CC, Lei HY (2001) Tumour necrosis factor-alpha causes an increase in blood-brain barrier permeability during sepsis. J Med Microbiol 50:812-821.
Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, Volpe JJ (2000) Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 106:625-632.
Tu YF, Tsai YS, Wang LW, Wu HC, Huang CC, Ho CJ (2011) Overweight worsens apoptosis, neuroinflammation and blood-brain barrier damage after hypoxic ischemia in neonatal brain through JNK hyperactivation. J Neuroinflammation 8:40.
Vandenabeele P, Declercq W, Vanhaesebroeck B, Grooten J, Fiers W (1995) Both TNF receptors are required for TNF-mediated induction of apoptosis in PC60 cells. J Immunol 154:2904-2913.
Veroni C, Gabriele L, Canini I, Castiello L, Coccia E, Remoli ME, Columba-Cabezas S, Arico E, Aloisi F, Agresti C (2010) Activation of TNF receptor 2 in microglia promotes induction of anti-inflammatory pathways. Mol Cell Neurosci 45:234-244.
Volpe JJ (2001) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50:553-562.
Volpe JJ (2008) Neurology of the Newborn. Philadelphia: W.B. Saunders Co.
Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110-124.
Wang LW, Chang YC, Lin CY, Hong JS, Huang CC (2010) Low-dose lipopolysaccharide selectively sensitizes hypoxic ischemia-induced white matter injury in the immature brain. Pediatr Res 68:41-47.
Wang X, Karlsson JO, Zhu C, Bahr BA, Hagberg H, Blomgren K (2001) Caspase-3 activation after neonatal rat cerebral hypoxia-ischemia. Biol Neonate 79:172-179.
Wang X, Svedin P, Nie C, Lapatto R, Zhu C, Gustavsson M, Sandberg M, Karlsson JO, Romero R, Hagberg H, Mallard C (2007) N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol 61:263-271.
Wilde GJ, Pringle AK, Sundstrom LE, Mann DA, Iannotti F (2000) Attenuation and augmentation of ischaemia-related neuronal death by tumour necrosis factor-alpha in vitro. Eur J Neurosci 12:3863-3870.
Wosik K, Biernacki K, Khouzam MP, Prat A (2007) Death receptor expression and function at the human blood brain barrier. J Neurol Sci 259:53-60.
Yang L, Lindholm K, Konishi Y, Li R, Shen Y (2002) Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci 22:3025-3032.
Yang L, Sameshima H, Ikeda T, Ikenoue T (2004) Lipopolysaccharide administration enhances hypoxic-ischemic brain damage in newborn rats. J Obstet Gynaecol Res 30:142-147.
Yepes M, Brown SA, Moore EG, Smith EP, Lawrence DA, Winkles JA (2005) A soluble Fn14-Fc decoy receptor reduces infarct volume in a murine model of cerebral ischemia. Am J Pathol 166:511-520.
Yoon BH, Park CW, Chaiworapongsa T (2003) Intrauterine infection and the development of cerebral palsy. BJOG 110 Suppl 20:124-127.
Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 96:13496-13500.
Zhang X, Winkles JA, Gongora MC, Polavarapu R, Michaelson JS, Hahm K, Burkly L, Friedman M, Li XJ, Yepes M (2007) TWEAK-Fn14 pathway inhibition protects the integrity of the neurovascular unit during cerebral ischemia. J Cereb Blood Flow Metab 27:534-544.
Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, Hagberg H, Blomgren K (2005) The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 12:162-176.
校內:2021-12-31公開