簡易檢索 / 詳目顯示

研究生: 王允辰
Wang, Yun-Chen
論文名稱: 運動對離乳後獨居與高脂肪飲食誘導憂鬱症的影響:額葉紋狀體迴路的角色
Effects of exercise on post-weaning isolation and high-fat diet-induced depression: the role of frontostriatal circuit
指導教授: 郭余民
Kuo, Yu-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 43
中文關鍵詞: 憂鬱症高脂肪飲食額葉紋狀體迴路運動微膠細胞
外文關鍵詞: Depression, High-fat diets, Frontostriatal circuit, Exercise, Microglia
相關次數: 點閱:103下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 憂鬱症是全球常見的精神疾病,尤其在青少年更為普遍。過去發現憂鬱症常與其他疾病共伴發生,其中,代謝疾病不僅增加了憂鬱症發生的風險,亦可加重其病徵。然而,代謝失調相關憂鬱症的發病機制尚不清楚。根據功能性磁振造影結果,憂鬱症患者的額葉紋狀體(frontostriatal, FS)迴路調節發現失常。之前的研究亦表明,在社交壓力及不健康的飲食都可能誘導神經發炎,這已被認為與FS迴路中多巴胺(dopamine, DA)傳遞失調以及憂鬱症的發病機制有關。另一方面,運動已知對憂鬱症症狀具有益處。綜合以上,本研究的目的是檢驗運動對代謝失調相關憂鬱症的有益效果,著重探討FS迴路上。為了誘導小鼠的類憂鬱表型,我們進行離乳後獨居 (post-weaning isolation, PWI) 和餵養高脂肪飲食 (high-fat diet, HFD) 處理(稱為PWI-HFD處理)。結果顯示,8週的PWI-HFD處理在雌性小鼠中誘發了類憂鬱行為的表現(即在糖水偏好試驗中對糖水的偏好降低,和在強迫游泳測試中的放棄掙扎的時間延長),但在雄性小鼠中沒有觀察到這些行為。因此,吾人僅採用雌性小鼠進行後續實驗。過去研究表明,憂鬱症與DA受體失衡、DUSP6 (dual-specificity phosphatase 6)表現量下降及FS區域內的神經炎症有關。我們的結果顯示,在進行8週PWI-HFD處理後,FS迴路中的DA受體沒有失衡。免疫螢光染色的結果中DUSP6表現量在前額葉顯著下降,然而西方墨點法中前額葉的DUSP6表現量沒有失衡。另外,在前額葉皮層和伏隔核中觀察到微膠細胞的顯著活化。接著,我們進一步探討運動是否能改善此類憂鬱症表徵。結果顯示,在PWI-HFD處理期間給予自主滾輪跑步運動,可緩解小鼠的類憂鬱行為表現,增加DUSP6表現量並抑制FS區域內的微膠細胞活化。然而,運動上升DUSP6表現量及抑制微膠細胞所介導之神經發炎,與BDNF/TrkB訊息傳遞路徑無關。綜合來說,PWI-HFD誘導的憂鬱行為透過一個未知的分子途徑運作,並且需要進一步的研究探討前額葉的DUSP6表現量與運動對緩解此類憂鬱症的機制。

    Depression is a common mental illness worldwide, especially among adolescents. Furthermore, depression is often comorbid with other disorders. Accumulated evidence suggested that metabolic syndrome increases the risk and contributes to a more severe course of depression. However, the exact mechanism underlying the pathogenesis of metabolic disorder-related depression remains unclear. Functional magnetic resonance imaging revealed dysregulation in the frontostriatal (FS) circuit among depressed patients. Previous studies showed that social stress and unhealthy diets both could induce neuroinflammation, which has been implicated in the dysregulation of dopamine (DA) transmission in the FS circuit, as well as the pathogenesis of depression. On the other hand, exercise is known to have benefit effects on depressive symptoms. The objective of this study is to examine the beneficial effect of exercise on metabolic disorder-related depression, with an emphasis on the FS circuit and in the adolescent. To induce depressive phenotypes in mice, we applied post-weaning isolation (PWI) and high-fat diet (HFD) feeding (termed as PWI-HFD treatment). The results showed that 8-week PWI-HFD treatment induced depression-like behaviors (i.e., reduced sucrose preference in sucrose preference test and increased immobility in forced swimming test) in female, but not male, mice. As a result, only female mice were used to study the effects of PWI-HFD on the FS circuit. Previous research demonstrated that depression is associated with imbalanced expression ratio of DA receptors, reduced dual-specificity phosphatase 6 (DUSP6) and microglial activation in the FS circuit. Our results revealed that an eight-week of PWI-HFD treatment did not alter the levels of DA receptors in the FS circuit. Additionally, immunostaining results exhibited a significant increase in DUSP6 in the medial prefrontal cortex (mPFC), whereas Western blotting results remained unchanged. Our results also revealed an increased microglial activation in the mPFC and nucleus accumbens. Voluntary wheel-running exercise, given together with the PWI-HFD treatment, alleviated the depressive phenotypes and increased DUSP6 in the mPFC, suppressed the microglial activation in the FS circuit. Notably, these effects were not associated with BDNF/TrkB signaling pathway. In conclusion, PWI-HFD-induced depression operates through an unknown molecular pathway, and further investigation is warranted to elucidate the role of DUSP6 and the mechanisms underlying the beneficial effects of exercise in alleviating PWI-HFD-induced depression. These findings suggest the potential of exercise as a therapeutic intervention for depression with metabolic syndromes, particularly in relation to the FS circuit.

    考試合格證明 I 中文摘要 II ABSTRACT III ACKNOWLEDGEMENT V LIST OF FIGURES IX INTRODUCTION 1 Depression: symptoms and challenges of therapy 1 Role of reward circuit in depression: dopamine transmission 3 Role of frontostriatal circuit in depression 4 Role of dual-specificity phosphatase 6 in depression 5 Role of neuroinflammation in depression 5 Role of brain-derived neurotrophic factor in depression 6 Exercise: an alternative therapeutic strategy for depression 6 HYPOTHESIS & SPECIFIC AIMS 8 MATERIALS & METHODS 9 Animals 9 Post-weaning isolation and high-fat diet feeding treatment 9 Voluntary wheel-running exercise 9 Sucrose preference test 10 Forced swimming test 10 Brain management 10 1. Protein extraction 10 2. Brain fixation 11 Vaginal smear technique 11 Hematoxylin & eosin staining 11 Western blotting 12 Immunohistochemistry 12 Immunostaining quantified analysis 13 Statistical analysis 13 RESULTS 14 The PWI-HFD treatment induced depressive phenotypes 14 Exercise rescued PWI-HFD induced depressive phenotypes 15 The expression of DA receptors in the FS circuit was not altered by PWI-HFD treatment or exercise 16 The expression of DUSP6 in the FS circuit might influenced by PWI-HFD treatment or exercise 16 Exercise reduced PWI-HFD induced microglial activation in the FS circuit 17 The expression of BDNF/TrkB in the FS circuit was not altered by exercise 17 DISCUSSION 19 CONCLUSION 22 TABLES 23 FIGURES 24 REFERENCES 38

    1. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 1997;349(9064):1498-1504.
    2. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021;398(10312):1700-1712.
    3. Shorey S, Ng ED, Wong CHJ. Global prevalence of depression and elevated depressive symptoms among adolescents: A systematic review and meta-analysis. Br J Clin Psychol 2022;61(2):287-305.
    4. Salk RH, Hyde JS, Abramson LY. Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol Bull 2017;143(8):783-822.
    5. Yang L, Zhao Y, Wang Y, et al. The Effects of Psychological Stress on Depression. Curr Neuropharmacol 2015;13(4):494-504.
    6. Linde JA, Simon GE, Ludman EJ, et al. A randomized controlled trial of behavioral weight loss treatment versus combined weight loss/depression treatment among women with comorbid obesity and depression. Ann Behav Med 2011;41(1):119-130.
    7. Patel V, Abas M, Broadhead J, Todd C, Reeler A. Depression in developing countries: lessons from Zimbabwe. Bmj 2001;322(7284):482-484.
    8. Kverno KS, Mangano E. Treatment-Resistant Depression: Approaches to Treatment. J Psychosoc Nurs Ment Health Serv 2021;59(9):7-11.
    9. Hammen C. Risk Factors for Depression: An Autobiographical Review. Annu Rev Clin Psychol 2018;14:1-28.
    10. Penner-Goeke S, Binder EB. Epigenetics and depression
. Dialogues Clin Neurosci 2019;21(4):397-405.
    11. Noworyta K, Cieslik A, Rygula R. Neuromolecular Underpinnings of Negative Cognitive Bias in Depression. Cells 2021;10(11).
    12. Park C, Rosenblat JD, Brietzke E, et al. Stress, epigenetics and depression: A systematic review. Neurosci Biobehav Rev 2019;102:139-152.
    13. Mandelli L, Petrelli C, Serretti A. The role of specific early trauma in adult depression: A meta-analysis of published literature. Childhood trauma and adult depression. Eur Psychiatry 2015;30(6):665-680.
    14. Targum SD, Nemeroff CB. The Effect of Early Life Stress on Adult Psychiatric Disorders. Innov Clin Neurosci 2019;16(1-2):35-37.
    15. Cruz FC, Duarte JO, Leão RM, Hummel LF, Planeta CS, Crestani CC. Adolescent vulnerability to cardiovascular consequences of chronic social stress: Immediate and long-term effects of social isolation during adolescence. Dev Neurobiol 2016;76(1):34-46.
    16. National Academies of Sciences E, Medicine, Division of B, et al. Social Isolation and Loneliness in Older Adults: Opportunities for the Health Care System. Washington (DC): National Academies Press (US); 2020.
    17. Erzen E, Çikrikci Ö. The effect of loneliness on depression: A meta-analysis. Int J Soc Psychiatry 2018;64(5):427-435.
    18. Du Preez A, Onorato D, Eiben I, et al. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun 2021;91:24-47.
    19. Huang Q, Zhou Y, Liu LY. Effect of post-weaning isolation on anxiety- and depressive-like behaviors of C57BL/6J mice. Exp Brain Res 2017;235(9):2893-2899.
    20. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 2001;24(6):1069-1078.
    21. Ali S, Stone MA, Peters JL, Davies MJ, Khunti K. The prevalence of co-morbid depression in adults with Type 2 diabetes: a systematic review and meta-analysis. Diabet Med 2006;23(11):1165-1173.
    22. Jantaratnotai N, Mosikanon K, Lee Y, McIntyre RS. The interface of depression and obesity. Obes Res Clin Pract 2017;11(1):1-10.
    23. Luppino FS, de Wit LM, Bouvy PF, et al. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry 2010;67(3):220-229.
    24. Papakostas GI. Limitations of contemporary antidepressants: tolerability. J Clin Psychiatry 2007;68 Suppl 10:11-17.
    25. Tsai SF, Hsu PL, Chen YW, et al. High-fat diet induces depression-like phenotype via astrocyte-mediated hyperactivation of ventral hippocampal glutamatergic afferents to the nucleus accumbens. Mol Psychiatry 2022;27(11):4372-4384.
    26. Nestler EJ, Carlezon WA, Jr. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 2006;59(12):1151-1159.
    27. Geugies H, Groenewold NA, Meurs M, et al. Decreased reward circuit connectivity during reward anticipation in major depression. Neuroimage Clin 2022;36:103226.
    28. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci 2013;14(9):609-625.
    29. Chaudhury D, Walsh JJ, Friedman AK, et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 2013;493(7433):532-536.
    30. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 2010;35(1):4-26.
    31. Chuhma N, Oh SJ, Rayport S. The dopamine neuron synaptic map in the striatum. Cell Rep 2023;42(3):112204.
    32. Houk J, Adams J, Barto A. A Model of How the Basal Ganglia Generate and Use Neural Signals that Predict Reinforcement. Models of Information Processing in the Basal Ganglia 1995;Vol. 13.
    33. Balleine BW, O'Doherty JP. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 2010;35(1):48-69.
    34. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol 1998;80(1):1-27.
    35. Huang Y, Huang H, Zhou L, et al. Mutant VPS35-D620N induces motor dysfunction and impairs DAT-mediated dopamine recycling pathway. Hum Mol Genet 2022;31(22):3886-3896.
    36. Andersen PH, Gingrich JA, Bates MD, et al. Dopamine receptor subtypes: beyond the D1/D2 classification. Trends Pharmacol Sci 1990;11(6):231-236.
    37. Niznik HB, Van Tol HH. Dopamine receptor genes: new tools for molecular psychiatry. J Psychiatry Neurosci 1992;17(4):158-180.
    38. Sibley DR. New insights into dopaminergic receptor function using antisense and genetically altered animals. Annu Rev Pharmacol Toxicol 1999;39:313-341.
    39. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev 1998;78(1):189-225.
    40. De Mei C, Ramos M, Iitaka C, Borrelli E. Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol 2009;9(1):53-58.
    41. Boyd KN, Mailman RB. Dopamine receptor signaling and current and future antipsychotic drugs. Handb Exp Pharmacol 2012(212):53-86.
    42. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011;63(1):182-217.
    43. Chen B, Xu J, Chen S, et al. Dysregulation of striatal dopamine D2/D3 receptor-mediated by hypocretin induces depressive behaviors in rats. J Affect Disord 2023;325:256-263.
    44. Furman DJ, Hamilton JP, Gotlib IH. Frontostriatal functional connectivity in major depressive disorder. Biol Mood Anxiety Disord 2011;1(1):11.
    45. Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci 2016;18(1):7-21.
    46. Hiser J, Koenigs M. The Multifaceted Role of the Ventromedial Prefrontal Cortex in Emotion, Decision Making, Social Cognition, and Psychopathology. Biol Psychiatry 2018;83(8):638-647.
    47. Di Martino A, Scheres A, Margulies DS, et al. Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 2008;18(12):2735-2747.
    48. Gasiorowska A, Wydrych M, Drapich P, et al. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021;13:654931.
    49. Mackey S, Petrides M. Architecture and morphology of the human ventromedial prefrontal cortex. Eur J Neurosci 2014;40(5):2777-2796.
    50. Xu P, Chen A, Li Y, Xing X, Lu H. Medial prefrontal cortex in neurological diseases. Physiol Genomics 2019;51(9):432-442.
    51. Christakou A, Robbins TW, Everitt BJ. Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J Neurosci 2004;24(4):773-780.
    52. Ghazizadeh A, Ambroggi F, Odean N, Fields HL. Prefrontal cortex mediates extinction of responding by two distinct neural mechanisms in accumbens shell. J Neurosci 2012;32(2):726-737.
    53. Francis TC, Lobo MK. Emerging Role for Nucleus Accumbens Medium Spiny Neuron Subtypes in Depression. Biol Psychiatry 2017;81(8):645-653.
    54. Seo JS, Wei J, Qin L, Kim Y, Yan Z, Greengard P. Cellular and molecular basis for stress-induced depression. Mol Psychiatry 2017;22(10):1440-1447.
    55. Choi EY, Yeo BT, Buckner RL. The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 2012;108(8):2242-2263.
    56. Labonté B, Engmann O, Purushothaman I, et al. Sex-specific transcriptional signatures in human depression. Nat Med 2017;23(9):1102-1111.
    57. Ekerot M, Stavridis MP, Delavaine L, et al. Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKP-3 gene promoter. Biochem J 2008;412(2):287-298.
    58. Harrison NA. Brain Structures Implicated in Inflammation-Associated Depression. Curr Top Behav Neurosci 2017;31:221-248.
    59. Wang H, He Y, Sun Z, et al. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation 2022;19(1):132.
    60. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem 2016;139 Suppl 2(Suppl 2):136-153.
    61. Meyer JH, Cervenka S, Kim MJ, Kreisl WC, Henter ID, Innis RB. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 2020;7(12):1064-1074.
    62. Deng SL, Chen JG, Wang F. Microglia: A Central Player in Depression. Curr Med Sci 2020;40(3):391-400.
    63. Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O. Neuroinflammation and psychiatric illness. J Neuroinflammation 2013;10:43.
    64. Hong H, Kim BS, Im HI. Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders. Int Neurourol J 2016;20(Suppl 1):S2-7.
    65. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin 2007;45(2):27-37.
    66. Kremlev SG, Roberts RL, Palmer C. Differential expression of chemokines and chemokine receptors during microglial activation and inhibition. J Neuroimmunol 2004;149(1-2):1-9.
    67. Merali Z, Brennan K, Brau P, Anisman H. Dissociating anorexia and anhedonia elicited by interleukin-1beta: antidepressant and gender effects on responding for "free chow" and "earned" sucrose intake. Psychopharmacology (Berl) 2003;165(4):413-418.
    68. O'Connor JC, Lawson MA, André C, et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 2009;14(5):511-522.
    69. Kobayashi K, Imagama S, Ohgomori T, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 2013;4(3):e525.
    70. Wang B, Huang X, Pan X, et al. Minocycline prevents the depressive-like behavior through inhibiting the release of HMGB1 from microglia and neurons. Brain Behav Immun 2020;88:132-143.
    71. Yu H, Chen ZY. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin 2011;32(1):3-11.
    72. He T, Wu Z, Zhang X, et al. A Bibliometric Analysis of Research on the Role of BDNF in Depression and Treatment. Biomolecules 2022;12(10).
    73. Kim YK, Lee HP, Won SD, et al. Low plasma BDNF is associated with suicidal behavior in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2007;31(1):78-85.
    74. Chourbaji S, Brandwein C, Gass P. Altering BDNF expression by genetics and/or environment: impact for emotional and depression-like behaviour in laboratory mice. Neurosci Biobehav Rev 2011;35(3):599-611.
    75. Carboni E, Carta AR. BDNF Alterations in Brain Areas and the Neurocircuitry Involved in the Antidepressant Effects of Ketamine in Animal Models, Suggest the Existence of a Primary Circuit of Depression. J Integr Neurosci 2022;21(5):144.
    76. Sagud M, Nikolac Perkovic M, Dvojkovic A, et al. Distinct association of plasma BDNF concentration and cognitive function in depressed patients treated with vortioxetine or escitalopram. Psychopharmacology (Berl) 2021;238(6):1575-1584.
    77. Colucci-D'Amato L, Speranza L, Volpicelli F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci 2020;21(20).
    78. Ohira K, Kumanogoh H, Sahara Y, et al. A truncated tropomyosin-related kinase B receptor, T1, regulates glial cell morphology via Rho GDP dissociation inhibitor 1. J Neurosci 2005;25(6):1343-1353.
    79. Ferrini F, De Koninck Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast 2013;2013:429815.
    80. Zhang JC, Wu J, Fujita Y, et al. Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int J Neuropsychopharmacol 2014;18(4).
    81. De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C, et al. Physical exercise in the prevention and treatment of Alzheimer's disease. J Sport Health Sci 2020;9(5):394-404.
    82. Stanton R, Reaburn P. Exercise and the treatment of depression: a review of the exercise program variables. J Sci Med Sport 2014;17(2):177-182.
    83. Celik O, Yildiz BO. Obesity and physical exercise. Minerva Endocrinol (Torino) 2021;46(2):131-144.
    84. Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 2002;25(6):295-301.
    85. Cassilhas RC, Tufik S, de Mello MT. Physical exercise, neuroplasticity, spatial learning and memory. Cell Mol Life Sci 2016;73(5):975-983.
    86. Bastioli G, Arnold JC, Mancini M, et al. Voluntary exercise boosts striatal dopamine release: evidence for the necessary and sufficient role of BDNF. J Neurosci 2022.
    87. Karstoft K, Pedersen BK. Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol 2016;94(2):146-150.
    88. Andoh M, Shibata K, Okamoto K, et al. Exercise Reverses Behavioral and Synaptic Abnormalities after Maternal Inflammation. Cell Rep 2019;27(10):2817-2825.e2815.
    89. Zhang X, He Q, Huang T, et al. Treadmill Exercise Decreases Aβ Deposition and Counteracts Cognitive Decline in APP/PS1 Mice, Possibly via Hippocampal Microglia Modifications. Front Aging Neurosci 2019;11:78.
    90. Wang TF, Wu SY, Pan BS, Tsai SF, Kuo YM. Inhibition of Nigral Microglial Activation Reduces Age-Related Loss of Dopaminergic Neurons and Motor Deficits. Cells 2022;11(3).
    91. Bekhbat M, Li Z, Mehta ND, et al. Functional connectivity in reward circuitry and symptoms of anhedonia as therapeutic targets in depression with high inflammation: evidence from a dopamine challenge study. Mol Psychiatry 2022;27(10):4113-4121.
    92. Liu MY, Yin CY, Zhu LJ, et al. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat Protoc 2018;13(7):1686-1698.
    93. Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. J Vis Exp 2015(97).
    94. Chari T, Griswold S, Andrews NA, Fagiolini M. The Stage of the Estrus Cycle Is Critical for Interpretation of Female Mouse Social Interaction Behavior. Front Behav Neurosci 2020;14:113.
    95. Carek PJ, Laibstain SE, Carek SM. Exercise for the treatment of depression and anxiety. Int J Psychiatry Med 2011;41(1):15-28.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE