| 研究生: |
凌侑靖 Ling, You-Jing |
|---|---|
| 論文名稱: |
共振柱試驗量測硬岩動態性質之研究 Measurement of Dynamic Properties of Hard Rock by Resonant Column Test |
| 指導教授: |
倪勝火
Ni, Sheng-Huo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 共振柱試驗 、岩石 、剪力模數 、阻尼比 、動態特性 |
| 外文關鍵詞: | resonant column test, rock, shear modulus, damping ratio, dynamic properties |
| 相關次數: | 點閱:53 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用兩種試驗方法,一為Stokoe固定–自由型式(fixed-free)共振柱試驗,另一為自由-自由型共振頻率法(free-free resonant frequency method),試驗岩心為變質砂岩,取樣自台灣東北部地區,在共振柱試驗中改變不同試體尺寸、黏著劑成份、驅動系統質量慣性矩、有效圍壓進行試驗,觀察控制參數與兩種試驗方法對硬岩之剪力模數與阻尼比之影響。
研究結果顯示,在共振柱試驗中,求取硬岩之剪力模數將會被低估而需要修正,且誤差隨量測試體之共振頻率越高而越大,然而修正結果顯示修正程序能有效減少誤差。
在共振柱試驗之控制參數方面,黏著劑成份使用氰基丙烯酸酯能使試體與驅動系統之耦合性更佳;有效圍壓對於硬岩之動態特性並無明顯影響;隨試體尺寸越小,量測之共振頻率變小,剪力波速變大且阻尼比有越小的趨勢,而剪力模數及阻尼比之門檻剪應變皆有提高的趨勢;隨驅動系統質量慣性矩越大,量測試體之共振頻率變大,剪力波速變大,其中以頂蓋及驅動盤皆為鋁材質所量測試體之阻尼比較小,然而頂蓋及驅動盤皆為不鏽鋼材質所量測試體之阻尼比較大。
以兩種試驗方法之量測結果顯示,以自由-自由型共振頻率法推求試體之阻尼比較固定-自由型共振柱試驗小,剪力模數則較大。
關鍵字:共振柱試驗、岩石、剪力模數、阻尼比、動態特性。
In this research, the Stokoe-type fixed-free resonant column test and free-free resonant frequency method were exploited to obtain the dynamic properties of hard rock. The rock samples were metamorphic sandstones which extracted from the northeast of Taiwan. In resonant column test, the specimens with different sizes, ingredients of adhesive, mass moment of inertia of drive system and confining pressure were conducted in high amplitude test, half-power bandwidth method and free vibration decay method to acquire the shear modulus and the damping ratio. In resonant column test, the research results show that (1) the shear modulus of the hard rock will be underestimated and needs to be corrected. The error in the estimation of shear modulus increases with the increasing in the measured resonant frequency. However, the correction results show that the correction procedure is the effective way to reduce error. (2) The use of cyanoacrylate as the adhesive ingredient makes the coupling between the specimen and the drive system better. (3) The confining pressure has no significant effect on the dynamic properties of hard rock. (4) The shear modulus increases with decreasing specimen size and increasing mass moment of inertia of drive system. (5) The damping ratio decreases with decreasing specimen size and decreasing mass moment of inertia of drive system. (6) The threshold shear strain of the shear modulus and damping ratio both increase with decreasing specimen size. (7) The measured frequency of specimen decreases with decreasing specimen size and decreasing mass moment of inertia of drive system. (8) The shear modulus obtained from fixed-free resonant column test is lower than from free-free resonant frequency method. (9) The damping ratio obtained from fixed-free resonant column test is higher than from free-free resonant frequency method.
key words: resonant column test, rock, shear modulus, damping ratio, dynamic properties
1. Åhnberg, H., Holmen, M., “Assessment of stabilised soil strength with geophysical methods,” Ground Improvement, Vol. 164, No. 3, pp. 109–116, 2011.
2. ASTM C 215, “Standard Test Method for Fundamental Transverse, Longitudinal and Torsional Resonant Frequencies of Concrete Specimens,” ASTM International, West Conshohocken, PA, USA, 1999.
3. Barla and Perino, “Resonant Column Apparatus Tests on Intact and Jointed Rock Specimens with Numerical Modeling Validation,” Rock Mechanics and Rock Engineering, Vol. 48, No. 1, pp. 197-211, 2014.
4. Brigham, E.O., “The Fast Fourier Transform,” E-System, USA, 1974.
5. Cascante and Santamarina, “Low Strain Measurements Using Random Noise Excitation,” Geotechnical Testing Journal, Vol. 20, No. 1, pp. 29-39, 1997.
6. Chappidi and Gunturi, “Site Specific Ground Response Analyses at Delhi, India,” Electronic Journal of Geotechnical Engineering, Vol. 14, Bund. D, pp. 1-16, 2009.
7. Chong, S.H. , Kim, J.W. and Cho, G.C., “Rock Mass Dynamic Test Apparatus for Estimating the Strain-Dependent Dynamic Properties of Jointed Rock Masses,” Geotechnical Testing Journal, Vol. 37, No. 2, pp. 311-318, 2014.
8. Chong, S.H. and Kim, J.Y., “Nonlinear Vibration Analysis of the Resonant Column Test of Granular Materials,” Journal of Sound and Vibration, Vol. 393, No. C, pp. 216-228, 2017.
9. Clayton, Priest, Zervos and Kim, “The Stokoe Resonant Column Apparatus: Effects of Stiffness, Mass and Specimen Fixity,” Geotechnique, Vol. 59, No. 5, pp. 429–437, 2009.
10. Drnevich, “Resonant Column Testing: Problems and Solutions,” Dynamic Geotechnical Testing, ASTM STP 654. West Conshohocken, PA, ASTM International, pp. 384-398, 1978.
11. Fratta, D. and Santamarina, J. C., “Shear Wave Propagation in Jointed Rock: State of Stress,” Geotechnique, Vol. 52, No. 7, pp. 594-505, 2002.
12. Guimond-Barrett, A., Nauleau, E., Le Kouby, A., Pantet, A., Reiffsteck, P., “Free–free Resonance Testing of In Situ Deep Mixed Soils,” Geotechnique Testing Journal, Vol. 36, No. 2, pp. 283–291, 2013.
13. Kumar J., Clayton C.R.I., “Effect of sample torsional stiffness on resonant column test results,” Canadian Geotechnical Journal, Vol. 44, No. 2, pp. 221–230, 2007.
14. Manandhara, Chob, and Kimc, “Site Classification System and Site Coefficients for Shallow Bedrock Sites in Korea,” Journal of Earthquake Engineering, Vol. 22, No. 7, pp. 1259-1284, 2018.
15. Martin Joseph Pucci, B.S., “Development of a Multi-Measurement Confined Free-Free Resonant Column Device and Initial Studies”, M.S. Thesis, University of Texas at Austin, 2010.
16. Ostrovsky, L. A. and Johnson, P.A., “Nonlinear Dynamics of Rock: Hysteretic Behavior,” Radiophysics and Quanturn Electronics, Vol. 44, Nos. 5-6, pp. 450-464, 2001.
17. Rydén, N., “Determining the Asphalt Mastercurve from Free–free Resonant Testing on Cylindrical Samples,” Proceedings, 7th International Symposium on Non-Destructive Testing in Civil Engineering, Nantes, France, 2009.
18. Schnabel, P.B., “Effects of Local Geology and Distance from Source on Earthquake Ground Motions,” Ph.D. Thesis, University of Calif., Berkeley, 1973.
19. Seed, H.B., and Idriss, I.M., “Soil Moduli and Damping Factors for Dynamic Response Analyses” Rep. No. EERC-70/10, Earthquake Engineering Research Center, Univ. of California at Berkeley, Berkeley, California, 1970.
20. Stokoe, K.H. II, Hwang, H.K., Roesset, J.M., and Sun, C.W., “Laboratory Measurements of Small-Strain Material Damping Using a Free-Free Resonant Column,” Proceedings, Second International Conference on Earthquake Resistant Construction and Design, Berlin, Germany, June, pp. 195-202, 1994.
21. Toohey, N.M., Mooney, M.A., “Seismic Modulus Growth of Limestabilised Soil During Curing,” Géotechnique, Vol. 62, No.2, pp. 161–170, 2012.
22. Vaghela, J.G., “Small-Strain Dynamic Properties of Dry Sand from the Free-Free Resonant Column,” M.S. Thesis, University of Texas at Austin, 1995.
23. Verástegui-Flores, R.D., Emidio, G.D., Bezuijen, Vanwalleghem and Kersemans, “Evaluation of the Free-Free Resonant Frequency Method to Determine Stiffness Moduli of Cement-Treated Soil,” Soil and Foundations, Vol. 55, No. 5, pp. 943-950, 2015.
24. 王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程研究所,(2004)。
25. 何文傑,「砂土承受垂直振動變形之初步研究」,碩士論文,成功大學土木工程學系,(2007)。
26. 吳偉特,「土壤動力學與大地工程」,地工技術雜誌,9期,pp. 5-19,(1985)。
27. 李偉榮,「細料含量對飽和粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,(2010)。
28. 紀佳妤,「應用共振柱試驗探討海床土壤動態特性之研究」,碩士論文,成功大學土木工程學系,(2020)。
29. 徐瑞旻,「共振柱試驗程式視窗化之研究」,碩士論文,國立成功大學土木工程研究所,(2002)。
30. 陳志瑋,「細料含量對乾粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,(2010)。
31. 葉兆欽,「飽和度對粉質砂土動態特性影響之研究」,碩士論文,國立成功大學土木工程研究所,(2011)。