簡易檢索 / 詳目顯示

研究生: 凌侑靖
Ling, You-Jing
論文名稱: 共振柱試驗量測硬岩動態性質之研究
Measurement of Dynamic Properties of Hard Rock by Resonant Column Test
指導教授: 倪勝火
Ni, Sheng-Huo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 105
中文關鍵詞: 共振柱試驗岩石剪力模數阻尼比動態特性
外文關鍵詞: resonant column test, rock, shear modulus, damping ratio, dynamic properties
相關次數: 點閱:53下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用兩種試驗方法,一為Stokoe固定–自由型式(fixed-free)共振柱試驗,另一為自由-自由型共振頻率法(free-free resonant frequency method),試驗岩心為變質砂岩,取樣自台灣東北部地區,在共振柱試驗中改變不同試體尺寸、黏著劑成份、驅動系統質量慣性矩、有效圍壓進行試驗,觀察控制參數與兩種試驗方法對硬岩之剪力模數與阻尼比之影響。
    研究結果顯示,在共振柱試驗中,求取硬岩之剪力模數將會被低估而需要修正,且誤差隨量測試體之共振頻率越高而越大,然而修正結果顯示修正程序能有效減少誤差。
    在共振柱試驗之控制參數方面,黏著劑成份使用氰基丙烯酸酯能使試體與驅動系統之耦合性更佳;有效圍壓對於硬岩之動態特性並無明顯影響;隨試體尺寸越小,量測之共振頻率變小,剪力波速變大且阻尼比有越小的趨勢,而剪力模數及阻尼比之門檻剪應變皆有提高的趨勢;隨驅動系統質量慣性矩越大,量測試體之共振頻率變大,剪力波速變大,其中以頂蓋及驅動盤皆為鋁材質所量測試體之阻尼比較小,然而頂蓋及驅動盤皆為不鏽鋼材質所量測試體之阻尼比較大。
    以兩種試驗方法之量測結果顯示,以自由-自由型共振頻率法推求試體之阻尼比較固定-自由型共振柱試驗小,剪力模數則較大。

    關鍵字:共振柱試驗、岩石、剪力模數、阻尼比、動態特性。

    In this research, the Stokoe-type fixed-free resonant column test and free-free resonant frequency method were exploited to obtain the dynamic properties of hard rock. The rock samples were metamorphic sandstones which extracted from the northeast of Taiwan. In resonant column test, the specimens with different sizes, ingredients of adhesive, mass moment of inertia of drive system and confining pressure were conducted in high amplitude test, half-power bandwidth method and free vibration decay method to acquire the shear modulus and the damping ratio. In resonant column test, the research results show that (1) the shear modulus of the hard rock will be underestimated and needs to be corrected. The error in the estimation of shear modulus increases with the increasing in the measured resonant frequency. However, the correction results show that the correction procedure is the effective way to reduce error. (2) The use of cyanoacrylate as the adhesive ingredient makes the coupling between the specimen and the drive system better. (3) The confining pressure has no significant effect on the dynamic properties of hard rock. (4) The shear modulus increases with decreasing specimen size and increasing mass moment of inertia of drive system. (5) The damping ratio decreases with decreasing specimen size and decreasing mass moment of inertia of drive system. (6) The threshold shear strain of the shear modulus and damping ratio both increase with decreasing specimen size. (7) The measured frequency of specimen decreases with decreasing specimen size and decreasing mass moment of inertia of drive system. (8) The shear modulus obtained from fixed-free resonant column test is lower than from free-free resonant frequency method. (9) The damping ratio obtained from fixed-free resonant column test is higher than from free-free resonant frequency method.

    key words: resonant column test, rock, shear modulus, damping ratio, dynamic properties

    摘要 I Extended Abstract II 致謝 VII 目錄 VIII 表目錄 XIII 圖目錄 XIV 第 一 章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與流程 1 1.3 論文內容概述 2 第 二 章 文獻回顧 4 2.1共振柱試驗之發展 4 2.2 固定-自由型共振柱試驗相關研究文獻 5 2.2.1 剪力模數影響因素 5 2.2.2 阻尼比影響因素 6 2.2.3 岩石動態性質曲線 8 2.2.4 剪力模數修正程序 9 2.3 自由-自由型共振頻率法相關研究文獻 12 2.3.1 試驗基本設置 12 2.3.2 試驗之準確性 15 2.3.3 剪力模數影響因素 16 2.3.4 阻尼比影響因素 16 2.3.5 快速傅立葉轉換 17 第 三 章 試驗原理 19 3.1 共振柱試驗基本假設 19 3.2 剪力模數之計算 20 3.2.1 自由-自由型共振頻率法 20 3.2.2 固定-自由型共振柱試驗 24 3.3阻尼比之計算 26 3.3.1自由振動衰減曲線法 26 3.3.2半功率頻寬法 31 3.4 共振柱試驗之剪應變計算 32 3.4.1 共振柱試驗之形狀函數 32 3.4.2 固定-自由型共振柱儀器之剪應變量測 34 第 四 章 試驗儀器與試驗方法 37 4.1 試驗設計控制變因 37 4.2 基本物性試驗 38 4.3 固定-自由型共振柱試驗 38 4.3.1 試驗儀器本體 38 4.3.2 有效圍壓加壓系統 40 4.3.3 控制與資料擷取設備 41 4.3.4 試驗方法與流程 44 4.3.5 儀器安裝 49 4.4 自由-自由型共振頻率法 52 4.4.1 試驗儀器介紹 52 4.4.2試驗步驟 56 第 五 章 試驗結果與分析 59 5.1固定-自由型共振柱試驗之剪力模數修正 59 5.1.1 剪力模數修正程序 60 5.1.2 剪力模數修正結果 65 5.2 對剪應變量之影響 68 5.2.1 儀器底鈑振動 68 5.2.2 黏著劑種類 72 5.2.3 試體尺寸 73 5.2.4 有效圍壓 75 5.2.5 驅動系統質量慣性矩 77 5.3 對剪力模數之影響 79 5.3.1 黏著劑種類 79 5.3.2 試體尺寸 80 5.3.3 有效圍壓 81 5.3.4 驅動系統質量慣性矩 82 5.4 對阻尼比之影響 83 5.4.1 黏著劑種類 83 5.4.2 試體尺寸 84 5.4.3 有效圍壓 85 5.4.4 驅動系統質量慣性矩 86 5.5對量測頻率的影響 87 5.5.1驅動系統之質量慣性矩 87 5.5.2試體尺寸 89 第 六 章 結論與建議 91 6.1結論 91 6.2建議 92 參考文獻 93 附錄A 共振柱頻率方程式推導 97 附錄B 無阻尼扭轉振動系統之共振頻率推導 102 附錄C 最大剪力波速及最小阻尼比 104

    1. Åhnberg, H., Holmen, M., “Assessment of stabilised soil strength with geophysical methods,” Ground Improvement, Vol. 164, No. 3, pp. 109–116, 2011.
    2. ASTM C 215, “Standard Test Method for Fundamental Transverse, Longitudinal and Torsional Resonant Frequencies of Concrete Specimens,” ASTM International, West Conshohocken, PA, USA, 1999.
    3. Barla and Perino, “Resonant Column Apparatus Tests on Intact and Jointed Rock Specimens with Numerical Modeling Validation,” Rock Mechanics and Rock Engineering, Vol. 48, No. 1, pp. 197-211, 2014.
    4. Brigham, E.O., “The Fast Fourier Transform,” E-System, USA, 1974.
    5. Cascante and Santamarina, “Low Strain Measurements Using Random Noise Excitation,” Geotechnical Testing Journal, Vol. 20, No. 1, pp. 29-39, 1997.
    6. Chappidi and Gunturi, “Site Specific Ground Response Analyses at Delhi, India,” Electronic Journal of Geotechnical Engineering, Vol. 14, Bund. D, pp. 1-16, 2009.
    7. Chong, S.H. , Kim, J.W. and Cho, G.C., “Rock Mass Dynamic Test Apparatus for Estimating the Strain-Dependent Dynamic Properties of Jointed Rock Masses,” Geotechnical Testing Journal, Vol. 37, No. 2, pp. 311-318, 2014.
    8. Chong, S.H. and Kim, J.Y., “Nonlinear Vibration Analysis of the Resonant Column Test of Granular Materials,” Journal of Sound and Vibration, Vol. 393, No. C, pp. 216-228, 2017.
    9. Clayton, Priest, Zervos and Kim, “The Stokoe Resonant Column Apparatus: Effects of Stiffness, Mass and Specimen Fixity,” Geotechnique, Vol. 59, No. 5, pp. 429–437, 2009.
    10. Drnevich, “Resonant Column Testing: Problems and Solutions,” Dynamic Geotechnical Testing, ASTM STP 654. West Conshohocken, PA, ASTM International, pp. 384-398, 1978.
    11. Fratta, D. and Santamarina, J. C., “Shear Wave Propagation in Jointed Rock: State of Stress,” Geotechnique, Vol. 52, No. 7, pp. 594-505, 2002.
    12. Guimond-Barrett, A., Nauleau, E., Le Kouby, A., Pantet, A., Reiffsteck, P., “Free–free Resonance Testing of In Situ Deep Mixed Soils,” Geotechnique Testing Journal, Vol. 36, No. 2, pp. 283–291, 2013.
    13. Kumar J., Clayton C.R.I., “Effect of sample torsional stiffness on resonant column test results,” Canadian Geotechnical Journal, Vol. 44, No. 2, pp. 221–230, 2007.
    14. Manandhara, Chob, and Kimc, “Site Classification System and Site Coefficients for Shallow Bedrock Sites in Korea,” Journal of Earthquake Engineering, Vol. 22, No. 7, pp. 1259-1284, 2018.
    15. Martin Joseph Pucci, B.S., “Development of a Multi-Measurement Confined Free-Free Resonant Column Device and Initial Studies”, M.S. Thesis, University of Texas at Austin, 2010.
    16. Ostrovsky, L. A. and Johnson, P.A., “Nonlinear Dynamics of Rock: Hysteretic Behavior,” Radiophysics and Quanturn Electronics, Vol. 44, Nos. 5-6, pp. 450-464, 2001.
    17. Rydén, N., “Determining the Asphalt Mastercurve from Free–free Resonant Testing on Cylindrical Samples,” Proceedings, 7th International Symposium on Non-Destructive Testing in Civil Engineering, Nantes, France, 2009.
    18. Schnabel, P.B., “Effects of Local Geology and Distance from Source on Earthquake Ground Motions,” Ph.D. Thesis, University of Calif., Berkeley, 1973.
    19. Seed, H.B., and Idriss, I.M., “Soil Moduli and Damping Factors for Dynamic Response Analyses” Rep. No. EERC-70/10, Earthquake Engineering Research Center, Univ. of California at Berkeley, Berkeley, California, 1970.
    20. Stokoe, K.H. II, Hwang, H.K., Roesset, J.M., and Sun, C.W., “Laboratory Measurements of Small-Strain Material Damping Using a Free-Free Resonant Column,” Proceedings, Second International Conference on Earthquake Resistant Construction and Design, Berlin, Germany, June, pp. 195-202, 1994.
    21. Toohey, N.M., Mooney, M.A., “Seismic Modulus Growth of Limestabilised Soil During Curing,” Géotechnique, Vol. 62, No.2, pp. 161–170, 2012.
    22. Vaghela, J.G., “Small-Strain Dynamic Properties of Dry Sand from the Free-Free Resonant Column,” M.S. Thesis, University of Texas at Austin, 1995.
    23. Verástegui-Flores, R.D., Emidio, G.D., Bezuijen, Vanwalleghem and Kersemans, “Evaluation of the Free-Free Resonant Frequency Method to Determine Stiffness Moduli of Cement-Treated Soil,” Soil and Foundations, Vol. 55, No. 5, pp. 943-950, 2015.
    24. 王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程研究所,(2004)。
    25. 何文傑,「砂土承受垂直振動變形之初步研究」,碩士論文,成功大學土木工程學系,(2007)。
    26. 吳偉特,「土壤動力學與大地工程」,地工技術雜誌,9期,pp. 5-19,(1985)。
    27. 李偉榮,「細料含量對飽和粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,(2010)。
    28. 紀佳妤,「應用共振柱試驗探討海床土壤動態特性之研究」,碩士論文,成功大學土木工程學系,(2020)。
    29. 徐瑞旻,「共振柱試驗程式視窗化之研究」,碩士論文,國立成功大學土木工程研究所,(2002)。
    30. 陳志瑋,「細料含量對乾粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,(2010)。
    31. 葉兆欽,「飽和度對粉質砂土動態特性影響之研究」,碩士論文,國立成功大學土木工程研究所,(2011)。

    下載圖示 校內:2023-08-02公開
    校外:2023-08-02公開
    QR CODE