| 研究生: |
黃于珊 Huang, Yu-Shan |
|---|---|
| 論文名稱: |
利用奈米銀墨水及壓電噴墨技術製備微接點之研究 Fabrication of Micro-Interconnection by Nano Silver Ink and Piezoelectric Ink-jet Printing Method |
| 指導教授: |
許聯崇
Hsu, Lien-Chung Steve |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 噴墨製程 、奈米銀墨水 、液滴堆疊 、剪切強度 、接觸電阻 |
| 外文關鍵詞: | Ink-jet printing, Nano-silver ink, Droplet pile up, Shear strength, Contact resistance |
| 相關次數: | 點閱:117 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓電噴墨製程技術為直接輸出技術的一種,配合精密對位系統與可適用多種墨水材料的特性,可以改善與替代半導體製程部分步驟,應用於3D IC產業晶圓接合上具有開發潛力。為了達到微接點製程低溫化,使用奈米墨水材料進行微接點接合成為發展重點,因此,針對奈米墨水材料的轉移品質進行研究,並且探討噴印厚度對微接點的強度、電性影響。
本研究利用奈米銀墨水為銅對接之接合材料,目的在於製備銅對銅接合導電精微結構,進一步探討噴印厚度與微接點性質之關係。在墨水轉移方面,透過高速攝影機觀察基板溫度對液滴沉積行為影響,找出合適噴印條件;接著,將此噴墨參數應用於銅對銅接合製程,藉由噴印厚度的改變探討微接點強度的影響,並且檢測在不同噴印厚度下電性的差異。此外,藉由提高基板溫度及微液滴噴印時間長短,於相同噴印銅墊片面積下達到增加墨水厚度,在液滴沉積堆疊過程中,觀察液滴的延展寬度、厚度與接觸角的變化,獲得最佳噴印條件及品質。
高固含量商用奈米銀墨水60 wt%,使用壓電噴頭於適當雙脈衝波形參數,可以形成單一顆微液滴,其直徑為52 μm及飛行速度為0.6 m/s。當基板溫度為50 oC,微液滴形成過程不受溫度影響,仍為單一顆穩定液滴;但微液滴沉積於銅墊片後,其延展幅度縮小。在微接點性質方面,當噴印墨水乾燥後厚度為5 μm,有最大之剪切強度可達30.4 MPa,並且有最低特徵接觸電阻為4.5×10-8 Ω∙cm2。在小範圍堆疊液滴方面,基板溫度為70 oC,使用循環式噴印模式可以成功在200 μm的範圍內堆疊成微液柱,其高度達111 μm。
Piezoelectric ink-jet printing technology is a kind of direct writing printing technology. This approach is attractive for replacing conventional processes, such as screen printing and photolithography, if carried out using a precision alignment system and multiple inks, especially with regard to the patterning of conductive tracks, and this is why it can be used for wafer-level 3-D integration bonding. Silver nanoparticle-based inks can be used to lower the temperature of the process, and thus the current study examines the printing performance of such inks and the effects of printing thickness on the shear strength and contact resistance of micro-interconnections.
We fabricated a Cu-to-Cu metallic microstructure by nano silver ink and ink-jet printing. The highly concentrated silver ink was ejected from the piezoelectric printhead by a suitable bipolar waveform. For each pulse cycle, the single droplet diameter was 52 μm with an average velocity of 0.6 m/s. At a substrate temperature of 50 oC, 60 droplets were printed on a Cu pad with diameter 600 μm and the thickness of drying layer was about 5 μm. According to our experimental results, this could provide effective bonding between Cu joints before the thermal compression process, which heated the material to 250 oC for 30 min. Consequently, the joints had a high shear strength of 30.4 MPa with a low specific contact resistance of 4.5×10-8 Ω∙cm2. For the advanced application on a small target, the height of the piled droplets reached to 111 μm within a small diameter of 200 μm when the substrate temperature was increased to 70 oC.
1. R.R. Schaller, Moore's law: past, present and future. IEEE spectrum, 1997. 34(6): p. 52-59.
2. K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita, and K. Takahashi, Micro Cu bump interconnection on 3D chip stacking technology. Japanese journal of applied physics, 2004. 43(4S): p. 2264.
3. C.S. Tan, R.J. Gutmann, and L.R. Reif, Wafer level 3-D ICs process technology. 2009: Springer Science & Business Media.
4. Y.-S. Tang, Y.-J. Chang, and K.-N. Chen, Wafer-level Cu–Cu bonding technology. Microelectronics Reliability, 2012. 52(2): p. 312-320.
5. R. Agarwal, W. Zhang, P. Limaye, R. Labie, B. Dimcic, A. Phommahaxay, and P. Soussan. Cu/Sn microbumps interconnect for 3D TSV chip stacking. in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th. 2010. IEEE.
6. B. Lee, J. Park, S.-j. Jeon, K.-w. Kwon, and H.-j. Lee, A Study on the bonding process of cu bump/sn/cu bump bonding structure for 3d packaging applications. Journal of The Electrochemical Society, 2010. 157(4): p. H420-H424.
7. H. Chuang, J. Yu, M. Kuo, H. Tong, and C. Kao, Elimination of voids in reactions between Ni and Sn: A novel effect of silver. Scripta Materialia, 2012. 66(3): p. 171-174.
8. K. Tu, Reliability challenges in 3D IC packaging technology. Microelectronics Reliability, 2011. 51(3): p. 517-523.
9. H. Alarifi, A. Hu, M. Yavuz, and Y.N. Zhou, Silver nanoparticle paste for low-temperature bonding of copper. Journal of Electronic Materials, 2011. 40(6): p. 1394-1402.
10. K.K.B. Hon, L. Li, and I.M. Hutchings, Direct writing technology—Advances and developments. CIRP Annals - Manufacturing Technology, 2008. 57(2): p. 601-620.
11. S. Reyntjens and R. Puers, A review of focused ion beam applications in microsystem technology. Journal of Micromechanics and Microengineering, 2001. 11(4): p. 287.
12. R.D. Piner, J. Zhu, F. Xu, S. Hong, and C.A. Mirkin, " Dip-pen" nanolithography. science, 1999. 283(5402): p. 661-663.
13. P. Manandhar, J. Jang, G. Schatz, M. Ratner, and S. Hong, Anomalous surface diffusion in nanoscale direct deposition processes. Physical review letters, 2003. 90(11): p. 115505.
14. S. Hong, J. Zhu, and C.A. Mirkin, Multiple ink nanolithography: toward a multiple-pen nano-plotter. Science, 1999. 286(5439): p. 523-525.
15. P. Buffat and J.P. Borel, Size effect on the melting temperature of gold particles. Physical review A, 1976. 13(6): p. 2287.
16. S.B. Fuller, E.J. Wilhelm, and J.M. Jacobson, Ink-jet printed nanoparticle microelectromechanical systems. Journal of Microelectromechanical systems, 2002. 11(1): p. 54-60.
17. N. Bieri, J. Chung, D. Poulikakos, and C. Grigoropoulos, Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension. Superlattices and Microstructures, 2004. 35(3): p. 437-444.
18. S.L.-C. Hsu and R.-T. Wu, Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects. Materials Letters, 2007. 61(17): p. 3719-3722.
19. K. Rajan, I. Roppolo, A. Chiappone, S. Bocchini, D. Perrone, and A. Chiolerio, Silver nanoparticle ink technology: state of the art. Nanotechnology, science and applications, 2016. 9: p. 1.
20. D.J. Hayes, W.R. Cox, and M.E. Grove, Low‐cost display assembly and interconnect using ink‐jet printing technology. Journal of the Society for Information Display, 2001. 9(1): p. 9-13.
21. T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, Polymer based organic solar cells using ink-jet printed active layers. Applied Physics Letters, 2008. 92(3): p. 22.
22. M. Campas and I. Katakis, DNA biochip arraying, detection and amplification strategies. TrAC Trends in Analytical Chemistry, 2004. 23(1): p. 49-62.
23. S.H. Kim, S.H. Lee, Y.G. Kim, and J. Jang, Ink-jet-printed organic thin-film transistors for low-voltage-driven CMOS circuits with solution-processed AlO X gate insulator. IEEE Electron Device Letters, 2013. 34(2): p. 307-309.
24. H.-Y. Son, J.-W. Nah, and K.-W. Paik, Formation of Pb/63Sn solder bumps using a solder droplet jetting method. IEEE transactions on electronics packaging manufacturing, 2005. 28(3): p. 274-281.
25. W. Buehner, J. Hill, T. Williams, and J. Woods, Application of ink jet technology to a word processing output printer. IBM Journal of research and development, 1977. 21(1): p. 2-9.
26. D.B. Bogy and F. Talke, Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices. IBM Journal of research and development, 1984. 28(3): p. 314-321.
27. E. Tekin, P.J. Smith, and U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008. 4(4): p. 703-713.
28. H. Dong, W.W. Carr, and J.F. Morris, Visualization of drop-on-demand inkjet: Drop formation and deposition. Review of Scientific Instruments, 2006. 77(8): p. 085101.
29. A.M. Worthington, A study of splashes. 1908: Longmans, Green, and Company.
30. R. Rioboo, M. Marengo, and C. Tropea, Time evolution of liquid drop impact onto solid, dry surfaces. Experiments in Fluids, 2002. 33(1): p. 112-124.
31. T. Lim, S. Han, J. Chung, J.T. Chung, S. Ko, and C.P. Grigoropoulos, Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate. International Journal of Heat and Mass Transfer, 2009. 52(1): p. 431-441.
32. C.-H. Wang, H.-L. Tsai, and W.-S. Hwang, Direct Printing of 1-D and 2-D Electronically Conductive Structures by Molten Lead-Free Solder. Materials, 2016. 10(1): p. 1.
33. H. Masuda, A. Ebata, and K. Teramae, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. 1993.
34. C. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Maré, S. Boucher, and H.A. Mintsa, Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon. International Journal of Heat and Fluid Flow, 2007. 28(6): p. 1492-1506.
35. G. Fang and A. Amirfazli, Understanding the edge effect in wetting: a thermodynamic approach. Langmuir, 2012. 28(25): p. 9421-9430.
36. K.S. Siow, Mechanical properties of nano-silver joints as die attach materials. Journal of alloys and compounds, 2012. 514: p. 6-19.