簡易檢索 / 詳目顯示

研究生: 林廷諺
Lin, Ting-Yan
論文名稱: 氮化鋁燃燒合成製程改進探討
Process Improvement on Combustion Synthesis of Aluminum Nitride
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 102
中文關鍵詞: 燃燒合成氮化鋁粉坯體密度
外文關鍵詞: aluminum nitride, combustion synthesis, green density
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract III 誌謝 XI 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1陶瓷材料簡述 1 1-2氮化鋁性質與應用 2 1-3目前氮化鋁主要之製備方法 5 第二章 實驗原理及文獻回顧 8 2-1燃燒合成法(Combustion synthesis ) 8 2-2燃燒反應熱力學分析 10 2-3燃燒反應動力學分析 13 2-4反應物粉坯體密度(Green Density)與壓力對燃燒合成反應之影響 14 2-5高溫自我蔓延燃燒合成氮化物 17 2-6氣相反應成核 20 2-6-1均勻相成核 20 2-7研究動機 22 第三章 實驗裝置儀器與藥品 24 3-1小型反應器裝置 24 3-2大型反應器裝置 26 3-3量產反應器裝置 27 3-4分析儀器 29 3-5其他儀器設備 32 3-6藥品 32 第四章 實驗方法 34 4-1反應錠製備流程 36 4-1-1小型反應錠 36 4-1-2大型反應錠 36 4-1-3試量產反應錠 37 4-2燃燒合成反應的進行 38 4-3氮化鋁產物之轉化率分析 39 第五章 結果與討論 41 5-1氮化鋁燃燒合成-添加劑對產物之影響 41 5-2不規則形鋁粉-使用氯化銨作為添加劑 44 5-2-1氯化銨添加劑對燃燒波傳播方向影響 44 5-3 影響氮化鋁燃燒合成之因素 50 5-3-1鎢絲引燃能量探討 50 5-3-2氮氣壓力對燃燒反應影響之探討 52 5-3-3鋁粉粉胚體密度對燃燒合成之影響 53 5-4氮化鋁量產製程開發-使用不規則形鋁粉混和片狀鋁粉 61 5-4-1不規則形鋁粉燃燒合成製程改善 61 5-4-2不規則形鋁粉混和片狀鋁粉之量產製程開發 65 5-4-3 JH400片狀鋁粉之燃燒合成探討 73 5-5探討混和不同片狀鋁粉對燃燒合成反應之影響 79 5-6使用鑫陶片狀鋁粉量產燃燒合成製程改進 91 第六章 結論 95 第七章 參考文獻 98

    1. 林政曉. 燃燒合成氮化鋁粉體新方法與量產技術開發. 1999.

    2. 蔡秉夆. 氮化鋁燃燒合成及後續製程開發. 國立成功大學碩士倫文 2020.

    3. Robert. 使用球形鋁粉燃燒合成及量產氮化鋁製程開發 國立成功大學碩士論文 2019.

    4. 汪建民. 陶瓷技術手冊Ceramic technology handbook 1994.

    5. Sander HK. ”High-tech Ceramics”. C&E News 1984.

    6. 吳朗. 電子陶瓷-入門 1992: 1-2.

    7. Sheppard LM. Aluminum nitride: a versatile bun challenging material. Am Ceram Soc Bull 1990, 69: 1801-1812.

    8. Zakorzhevskii V, Borovinskaya I, Sachkova N. Combustion synthesis of aluminium nitride. Neorganicheskie Materialy 2002, 38(11): 1340-1350.

    9. CRC Handbook of Chemistry and Physics 2016, 97th Edition: 4-45.

    10. Morkoç H. Aluminum, Gallium, and Indium Nitrides. 2001: 121-126.

    11. 周和平, 劉耀誠, 吴音. 氮化鋁陶瓷的研究與應用. 1998.

    12. Elagin A, Beketov A, Baranov M, Shishkin R. Aluminum nitride. Preparation methods. Refractories and industrial ceramics 2013, 53(6): 395-403.

    13. Watari T, Akizuki T, Ikeda H, Torikai T, Matsuda O. Shape of AlN Powders Prepared by Vapor Phase Reaction of AlCl3⋅ NH3-NH3-N2 System. Journal of the Ceramic Society of Japan 1989, 97(1128): 864-867.

    14. Nickel KG, Riedel R, Petzow G. Thermodynamic and experimental study of high‐purity aluminum nitride formation from aluminum chloride by chemical vapor deposition. Journal of the American Ceramic Society 1989, 72(10): 1804-1810.

    15. Riedel R, Gaudl KU. Formation and characterization of amorphous aluminum nitride powder and transparent aluminum nitride film by chemical vapor deposition. Journal of the American Ceramic Society 1991, 74(6): 1331-1334.

    16. Maya L. Synthetic approaches to aluminum nitride via pyrolysis of a precursor. Adv Ceram Mater 1986, 1(2): 150-153.

    17. Okada T, Toriyama M, Kanzaki S. Synthesis of aluminum nitride sintered bodies using the direct nitridation of Al compacts. Journal of the European Ceramic Society 2000, 20(6): 783-787.

    18. Kuang J, Zhang C, Zhou X, Wang S. Synthesis of high thermal conductivity nano-scale aluminum nitride by a new carbothermal reduction method from combustion precursor. Journal of crystal growth 2003, 256(3-4): 288-291.

    19. Bradshaw SM, Spicer JL. Combustion synthesis of aluminum nitride particles and whiskers. Journal of the American Ceramic Society 1999, 82(9): 2293-2300.

    20. Chung S-L, Yu W-L, Lin C-N. A self-propagating high-temperature synthesis method for synthesis of AlN powder. Journal of materials research 1999, 14(5): 1928-1933.

    21. Dunmead SD, Moore, W. G., Howard, K. E. & Morse, K. C. Google Patents 1997.

    22. Merzhanov A, Borovinskaya I. Self-spreading high-temperature synthesis of refractory inorganic compounds. Doklady Akademii Nauk SSSR, Seriya Khimiya 1972, 204(2): 366-369.

    23. Merzhanov AG. Self-propagating high-temperature synthesis: twenty years of search and findings. Combustion and plasma synthesis of high-temperature materials 1990: 1-53.

    24. Khaikin B, Merzhanov A. Theory of thermal propagation of a chemical reaction front. Combustion, Explosion and Shock Waves 1966, 2: 22-27.

    25. Gregorski SJ. High green density metal parts by vibrational compaction of dry powder in the three-dimensional printing process. 1996.

    26. 康新婷, 蔣紀麟, 劉素英. 自蔓延高溫合成(SHS) TiN粉末的研究. 自蔓延高溫合成技術研究進展, 武漢工業大學出版社 1994.

    27. 張學軍, 鄭永挺, 韓傑才, 周立娟. 稀釋劑含量對自蔓延高溫合成Si3N4-SiC-TiN 陶瓷的影響. 2006.

    28. 江國健, 莊漢銳, 李文蘭, 鄔鳳英, 張寶林. 高壓氮氣中燃燒合成氮化鋁的機理研究 (1). 材料科學與工程學報 2000: 237-240.

    29. Karpiński J, Porowski S. High pressure thermodynamics of GaN. Journal of crystal growth 1984, 66(1): 11-20.

    30. Lee W-C, Tu C-L, Weng C-Y, Chung S-L. A novel process for combustion synthesis of AlN powder. Journal of materials research 1995, 10(3): 774-778.

    31. Mukas' yan A, Martynenko V, Merzhanov A, Borovinskaya I, Blinov MY. Mechanism and principles of silicon combustion in nitrogen. Combustion, Explosion and Shock Waves 1986, 22(5): 534-540.

    32. Munir ZA, Holt JB. The combustion synthesis of refractory nitrides. Journal of materials science 1987, 22(2): 710-714.

    33. Merzhanov A, Borovinskaya I, Volodin YE. Combustion of porous metal samples in nitrogen: Inst. of Physical Chemistry, Moscow; 1972.

    34. Eslamloo‐Grami M, Munir ZA. Effect of nitrogen pressure and diluent content on the combustion synthesis of titanium nitride. Journal of the American Ceramic Society 1990, 73(8): 2222-2227.

    35. Pityulin A, Shcherbakov V, Borovinskaya I, Merzhanov A. Laws and mechanism of diffusional surface burning of metals. Combustion, Explosion and Shock Waves 1979, 15(4): 432-437.

    36. Марков ЮМ, Латухин ЕИ. СВС нитрида алюминия с использованием активирующих добавок. Современные материалы, техника и технологии 2019(5 (26)).

    37. Sheppard LM. Powders That" Explode" Into Materials. Adv Mater Process 1986, 2(2): 25-32.

    38. Holt JB. Exothermic process yields refractory nitride materials. Ind Res Dev 1983, 25(4): 88.

    39. Dunmead SD, Munir ZA, Holt JB. Gas-solid reactions under a self-propagating combustion mode. Solid State Ionics 1989, 32: 474-481.

    40. Costantino M, Firpo C. High pressure combustion synthesis of aluminum nitride. Journal of materials research 1991, 6(11): 2397-2402.

    41. 林俊男. 燃燒合成氮化鋁之製程開發. 國立成功大學博士論文 2001.

    42. 張智偉. 燃燒法合成氮化鋁粉體之新製程開發. 國立成功大學碩士論文 2003.

    43. 羅宇麟. 氮化鋁燃燒合成製程開發. 國立成功大學碩士倫文 2020.

    44. 王唯侖. 氮化鋁/環氧樹脂複合材料之流變性及熱傳導性質探討. 國立成功大學碩士論文 2019.

    45. Kasori M, Shinozaki K, Anzai K, Tsuge A, Imagawa H, Takano T, et al. Aluminum nitride sintered body, US5001089A. Google Patents 1989.

    46. Long G, Foster L. Aluminum Nitride, a Refractory for Aluminum to 2000° C. Journal of the American Ceramic Society 1959, 42(2): 53-59.

    47. Lihrmann JM, Zambetakis T, Daire M. High‐temperature behavior of the aluminum oxycarbide Al2OC in the system Al2O3–Al4C3 and with additions of aluminum nitride. Journal of the American Ceramic Society 1989, 72(9): 1704-1709.

    無法下載圖示 校內:2026-06-16公開
    校外:2026-06-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE