簡易檢索 / 詳目顯示

研究生: 邱鈺婷
Chiou, Yu-ting
論文名稱: 藻類胞外物對UF膜阻塞的影響
Effect of of Algal Extracellular Polymer Substances on UF Membrane Fouling
指導教授: 葉宣顯
Hsuan-hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 102
中文關鍵詞: 藻類胞外物質臨界通量阻塞程度
外文關鍵詞: critical flux, EPS, fouling rate
相關次數: 點閱:105下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣自來水之水源多依賴水庫蓄水,而依據環保署監測資料顯示,主要水庫普遍有優養化現象。優養化現象所帶來之藻類及其所衍生之問題,對淨水程序是ㄧ項新的挑戰。在淨水程序中,薄膜雖對藻類之去除率甚高,但藻類胞外物質(Extracellular Polymeric Substances , EPS)容易附著在膜表面上,造成薄膜阻塞(fouling),進而降低薄膜使用效率及壽命。本研究主要探討不同藻種之EPS與薄膜間之相互作用,及對阻塞之影響,俾提升薄膜程序用於處理優養化原水之效率。
    本研究考量胞外黏質層之厚薄不同,選擇綠藻A(Chlorella vulgaris)、綠藻B(Chodatella sp.)及藍綠藻(Microcystis sp.)為主要之研究對象,並在實驗室進行純種培養。然後據以配製人工藻液,以 Dead-end Stirred Cell 進行UF膜之過濾實驗。臨界通量(Critical flux) 則是作為判斷急遽阻塞之依據,並探討該值與藻體胞外黏質層之厚薄或溶解態 EPS之關聯性。其後選擇超過臨界通量之壓力下操作,觀察比通量隨時間下降之情形,以比較阻塞程度之差異。另外,胞外黏質層中蛋白質與多醣體含量、藻體表面官能基,及胞外黏質層有機物之分子量分布,與薄膜阻塞間之關聯性,亦是本研究之重點。
    結果顯示:人工配製原水中含胞外黏質層較厚(73%)且多醣體比例較高(1.73 mg polysaccharides/mg C)者(Microcystis sp.),其臨界通量為最低(45 Lm-2h-1),其次為胞外物中等(60%)且多醣體比例(0.73 mg polysaccharides/mg C)中等者(Chodatella sp.)臨界通量居中(60 Lm-2h-1),而胞外物較薄(43%)且多醣體比例較低(0.69 mg polysaccharides/mg C)者(C. vulgaris),為臨界通量最高者(70 Lm-2h-1),臨界通量與胞外物的厚薄及胞外物多醣體含量有關。
    在超過臨界通量之操作條件下,比通量隨過濾時間之下降情形所顯示之阻塞程度則與胞外黏質層之厚薄無正比之關係,亦與胞外黏質層中蛋白質與多醣體含量、藻體表面官能基(三者主要官能基所對應的物種都為多醣體和蛋白質),及胞外黏質層之分子量(三者皆在 3.4-6.3 kDa)大小等因素,無顯著之關係。

    Reservoirs are the main source of public water supply in Taiwan. However, many reservoirs are eutropic and resulted in the presence of algae and reluted problems, such as taste and odor,filter and clogging,and even toxins.Therefore the treatment of eutrophic reservoir water is a new challenge to the Taiwan’s water supply industry.Membrane process could remove algaes effieciently.However, fouling is the major constraintin membrane application, as it decreases water production and also shortens membrane lifespan. In this study, the effectof extracellular polymeric substances(EPS) of algae on membrane fouling is investigated.
    First, three species of algae, namely green algae A (Chlorella vulgaris)、green algae B(Chodatella sp.) and blue-green algae (Microcystis sp.) were cultured under controlled condition.These three algae species have similar cell size and shape, but with different amount of EPS.Algal suspensions were prepared from harvested algal cells.Dead-end Stirred Cell with regenerated cellulose UF membrane (MWCO 10,000 Da) were need to conduct filtration with algal suspensions under constant pressure mode.Critical flux from each of three algal suspensions were determined.The effect of the thickness of bound EPS and the presence of soluble EPS on critical flux value were discussed. Further, the extent of membrane fouling was compared by observing the decreaseing rate of specific flux with transmembrane pressure higher than that under critical flux condition.Additionally, the relationship between membrane fouling and the amount protein and polysaccharides in bound EPS.The functional groups of algal cell surface and molecular weight distribution of bound EPS were also discussed.
    The results show that algal suspension, containing cells with largest amount of EPS and higher proportion of polysaccharides, have lowest critical flux.The next is algae with medium amount of EPS which algae,with lowest amount of EPS and lower proportion of polysaccharides,have highest critical flux.However, the extent of membrane fouling,as shown by the decreasing rate of specific flux,is found to be independent of the thickness of bound EPS,the ratio of protein/polysaccharide,the functional groups of algae cell surface and also the molecular weight of EPS.

    目錄 摘要.........................................I Abstract.....................................Ⅲ 誌謝.........................................Ⅳ 目錄.........................................Ⅴ 圖目錄.......................................Ⅸ 表目錄....................................ⅩIII 附錄........................................XIV 第一章前言....................................1 1-1 研究緣起..................................1 1-2 研究目的..................................2 第二章 文獻回顧...............................3 2-1 優養化對淨水之影響........................3 2-2 淨水程序對藻類之去除效果..................5 2-3 薄膜程序..................................7 2-3-1 薄膜種類...............................8 2-3-2 薄膜材質..............................10 2-3-3 薄膜模組..............................11 2-3-4 掃流過濾及垂直過濾....................12 2-4 UF膜之簡介與應用.........................14 2-5 薄膜積垢與濃度極化.......................16 2-5-1 濃度極化..............................16 2-5-2 薄膜積垢..............................17 2-5-3 其他影響薄膜積垢之因素................18 2-6 臨界通量.................................19 2-7 EPS 對薄膜阻塞之影響.....................23 2-7-1 藻類胞外物............................23 2-7-2 EPS 對薄膜阻塞之影響..................25 2-8 ATR-FTIR用於膜表面阻塞物之分析...........28 第三章實驗材料與方法.........................31 3-1實驗流程規劃..............................31 3-2人工藻液配製..............................33 3-2-1藻種選取...............................33 3-2-2藻類純種培養...........................33 3-2-3藻類計數...............................37 3-2-3-1 鏡檢...............................37 3-2-3-2 光學密度與細胞顆粒計數.............38 3-2-3-3葉綠素a 分析及濁度計數..............41 3-2-3-4 人工藻液之製備.....................44 3-2-3-5 僅含溶解態之人工藻液...............45 3-3 EPS 之特性分析...........................45 3-3-1 Soluble EPS 之分析....................45 3-3-2 Bound EPS 之蛋白質與多醣體之分析......47 3-4 薄膜裝置與臨界通量試驗...................50 3-5胞外物及膜表面官能基之分析................52 3-6高效能分子篩層析儀........................52 3-7一般水質分析..............................55 3-7-1 pH 值...............................55 3-7-2導電度...............................55 3-7-3非揮發溶解性有機碳...................56 3-7-4藻體細胞界達電位測定.................57 第四章 結果與討論............................59 4-1胞外物體積之估計..........................59 4-2藻類之生長曲線與Soluble EPS之關係.........61 4-3藻類胞外物厚薄對UF膜阻塞之影響............63 4-3-1含藻體懸浮液之臨界通量試驗............63 4-3-2人工藻液中Soluble EPS之臨界通量試驗...71 4-3-3 比通量對薄膜阻塞之影響...............74 4-4藻體胞外物之特性..........................76 4-4-1藻體及Soluble EPS 之官能基分析........76 4-4-2 藻類胞外黏質層內蛋白質及多醣體之含量.82 4-4-3 胞外黏質層及 Soluble EPS之分子量分佈.83 4-5 含藻懸浮液及僅含Soluble EPS 之人工藻液對 UF 膜阻塞的影響.................................84 4-5-1僅含Soluble EPS 之人工藻液對UF膜阻塞之影 響...........................................84 4-5-2含藻懸浮液對 UF膜阻塞之影響...........87 第五章 結論與建議............................89 5-1結論......................................89 5-2建議......................................90 參考文獻.....................................91 圖目錄 圖 2-1 不同薄膜孔徑對不同物質之分離範圍.....................................9 圖 2-2 薄膜操作壓力與水通量圖...........................................................9 圖 2-3 薄膜材質之化學結構式.....................................................11 圖 2-4 Dead-end 過濾與Cross-flow過濾之示意圖...........................13 圖 2-5 薄膜過濾機制.............................................................................15 圖 2-6 濃度極化機制.............................................................................17 圖 2-7 Fixed flux 實驗下壓力隨時間之變化.......................................20 圖 2-8 為比較粒徑對臨界通量之影響................................................22 圖 2-9 Bound EPS &Soluble EPS...........................................................24 圖 2-10 多醣體濃度與積垢速率之關係...............................................27 圖 2-11 比通量與汙泥懸浮液中多醣體濃度關係...............................27 圖 3-1 實驗流程規劃............................................................................32 圖 3-2 分光光度計偵測C. vulgaris之最佳吸收波長................39 圖 3-3 C. vulgaris在波長689 nm吸光値與相對應藻數之相關 性.....................................................................................................39 圖 3-4 分光光度計偵測Chodatella sp.之最佳吸收波長.....................40 圖 3-5 Chodatella sp.在波長684 nm吸光値與相對應藻數之相關性40 圖 3-6 Microcystis sp.之藻數與濁度之相關性......................................42 圖 3-7 Microcystis sp.之藻數與葉綠素 a 之相關性...........................43 圖 3-8 PAS method 檢量線....................................................................46 圖 3-9 Anthrone method 檢量線...........................................................48 圖 3-10 Lowry protein method檢量線...................................................49 圖 3-11 薄膜裝置圖..............................................................................51 圖 3-12 PEG 標準品之檢量線.............................................................55 圖 4-1 胞外物體積量測之圖示.............................................................60 圖 4-2 C. vulgaris生長曲線與Soluble EPS之關係圖..........62 圖 4-3 Chodatella sp.生長曲線與Soluble EPS之關係圖....................62 圖 4-4 Microcystis sp.生長曲線與Soluble EPS之關係圖....................63 圖 4-5 僅含 0.003 NNaClO4 之臨界通量之求取...............................64 圖 4-6 (A) C. vulgaris懸浮液在改變壓力時,濾液通量隨時間改變之 情形 (B) 平均濾液通量與過膜壓力之關係................................................65 圖 4-7 (A) Chodatella sp.懸浮液在改變壓力時,濾液通量隨時間之改 變之情形 (B) 平均濾液通量與過膜壓力之關係….............................67 圖 4-8 (A) Microcystis sp.懸浮液在改變壓力時,清水通量隨時間之改 變之情形 (B) 平均濾液通量與過膜壓力之關係.................................68 圖 4-9 比通量(specific flux)隨累積濾液/單位膜面積下降情形........71 圖 4-10 Soluble EPS (C. vulgaris)過膜壓力與濾液通量隨時間改變之情形.............................................................................................72 圖 4-11 Soluble EPS (Chodatella sp.) 過膜壓力與濾液通量隨時間改變之情形.................................................................................................73 圖 4-12 Soluble EPS (Microcystis sp.) 過膜壓力與濾液通量隨時間改變之情形.................................................................................................73 圖 4-13 藻體與僅含0.003N NaClO4溶液平均濾液通量與過膜壓力之比較.........................................................................................................74 圖 4-14 4 kPa下藻體懸浮液之比通量隨時間變化之情形……….75 圖 4-15 4 kPa 下Soluble EPS之比通量隨時間變化之情形……..76 圖 4-16 C. vulgaris 胞外黏質層之 FTIR 圖譜……………77 圖 4-17 Chodatella sp.胞外黏質層之 FTIR 圖譜…………………77 圖 4-18 Microcystis sp.胞外黏質層之 FTIR 圖譜…………………78 圖 4-19 Soluble EPS (C. vulgaris) 之 FTIR分析圖譜……81 圖 4-20 Soluble EPS (Chodatella sp.) 之 FTIR分析圖譜………81 圖 4-21 Soluble EPS (Microcystis sp.) 之 FTIR分析圖譜………82 圖 4-22 乾淨膜之ATR-FTIR 圖譜 ................................................85 圖 4-23 Soluble EPS (C. vulgaris)過 UF膜之ATR-FTIR 圖譜......................................................................................................86 圖 4-24 Soluble EPS (Chodatella sp.)過 UF膜之ATR-FTIR圖譜…86 圖 4-25 Soluble EPS (Microcystis sp.)過 UF膜之ATR-FTIR圖譜…87 表目錄 表 2-1 不同處理程序對藻類去除的效果……………………………6 表 2-2 比較好氧與厭氧下polysaccharide之比重與孔隙..............28 表 3-1 C. vulgaris 營養鹽配方..................................................34 表 3-2 Norris-Calvin V medium(用於 Chodatella sp.)........................35 表 3-3 BG 11 medium(用於Microcystis sp.) .......................................36 表 3-4 人工藻液之特性......................................................................44 表 4-1 藻體胞外黏質層及 Soluble EPS 主要官能基…………….79 表 4-2 胞外黏質層之單位 NPDOC中蛋白質與多醣體之含量........83 表 4-3 胞外黏質層及 Soluble EPS之分子量分佈.............................84 表 4-4 30 psi下Soluble EPS過UF膜之 NPDOC值的變化..............85 表 4-5 藻體特性及含藻懸浮液之薄膜試驗結果................................88 附錄 附錄 A..............................................................................................98 附圖 A.1 PEG 590Da 之HPSEC分析圖譜( RT= 38.8 min) ........98 附圖 A.2 PEG 1065Da 之HPSEC分析圖譜( RT= 32.44 min).....98 附圖 A.3 PEG 3410 Da 之HPSEC分析圖譜( RT= 26.6 min)…98 附圖 A.4 PEG 6250 Da 之HPSEC分析圖譜( RT= 22.8 min )…99 附圖 A.5 PEG 14600Da 之HPSEC分析圖譜( RT= 18.9 min)…99 附錄 B..............................................................................................100 附圖 B.1 Bound EPS(C. vulgaris)之HPSEC圖譜(RT = 24.9 min) ...................................................................................................100 附圖 B.2 Bound EPS (Chodatella sp.)之HPSEC圖譜(RT = 24.03 min) ...................................................................................................100 附圖 B.3 Bound EPS (Microcystis sp.)之HPSEC圖譜(RT = 24.11 min) ...................................................................................................100 附圖B.4 Soluble EPS (C. vulgaris)之HPSEC圖譜(RT = 24.25 min) ....................................................................................................101 附圖 B.5 Soluble EPS (Chodatella sp.)之HPSEC圖譜(RT = 24.08, 27.23 min) ..........................................................................................101 附圖 B.6 Soluble EPS (Microcystis sp.)之HPSEC圖譜(RT=24.09,28.10 min) .....................................................................................................101

    Babel, S., Takizawa, S., Ozaki, H. 2002. Factors Affecting Seasonal Variation of Membrane Filtration Resistance Caused by Chlorella Algae. Water Research 36:1193-1202.

    Bernhardt, H. 1989. Studies on the Treatment of Eutrophic Water. Water Supply: the Review Journal of the International Water Supply Association 17:12-1~12-16.

    Bruggen, B.V., Braeken, L., Vendecasteele, C. 2002. Evaluation of Parameters Describing Flux Decline in Nanofiltration of Aqueous Solutions Containing Orangic Compounds. Desalination 147:281-288.

    Chang, I.-S., Lee, C. -H. 1998. Membrane Filtration Characteristics in Membrane-coupled Activated Sludge System-the Effect of Physiological States of Activated Sludge on Membrane Fouling. Desalination 120: 221-230.

    Chang, J.S., Tsai, L.J., Vigneswaran, S. 1996. Experimental Investigation of the Effect of Particle Size Distribution of Suspended Particles on Microfiltration. Water Science and Technology 34:133-140.

    Cheryan, M. 1998. Ultrafiltration and Microfiltration Handbook. Technomic Lancaster

    Choi, K. Y. J. and Dempsey, B. A. 2005. Bench-Scale Evaluation of Critical Flux and TMP in Low-pressure Membrane Filtration. Journal AWWA, 97:7:134-145.

    Comte, S., Guibaud, G., Baudu, M. 2006. Biosorption Properties of
    Extracellular Polymeric substances (EPS) Resulting from Activated
    Sludge According to their Type: Soluble or Bound. Process Biochemistry
    41:815-823.

    Crittenden, J. C. 2005. Water Treatment: Principles and Design.John Wiley&Sons, Inc.

    Decho, A.W., Herndl, G. J. 1995. Microbial Activities and the Transformation of Organic Matter within Mucilaginous Material. Science of the Total Environment 165:33-42.

    Defrance, L and Jaffrin, M. Y. 1999. Comparison between Filtrations at Fixed Transmembrane Pressure and Fixed Permeate Flux:Application to a Membrane Bioreactor Used for Wastewater Treatment. Journal of Membrane Science, 152:203-210.

    Dolej, P. 1993. Influence of Algae and their Exudates on Removal of Humic Substances and Optimal Dose of Coagulant. Water Science Technology 27:123-132.

    Field, R.W., Wu, D., Howell, J.A., Gupta, B.B. 1995. Critical Flux Concept for Microfiltration Fouling. Journal of membrane Science. 100:259-272.

    Gonzalez-Davila, M., Santana-Casiano, J.M., Perez-Peña, J., Millero, F.J.
    1995. Binding of Cu(II) to the Surface and Exudates of the Alga
    Dunaliella Tertiolecta in Seawater. Environmental Science and Technology29:289–301.

    Grossart, H.-P., M, S. 1993. Limnetic Macroscopic Organic Aggregates (lake snow): Occurrence, Characteristics, and Microbial Dynamics in Lake Constance. Limnology and Oceanography 38:532–546.

    Habarou, H., Croué, J.P., Franiatte, A., Démocrate, C. 2006. Identification of Organic Foulants of Nanofiltration Membrane Used for Drinking Water Production. Water Practice & Technology 1:1-9.

    Her, N., Amy, G., Park, H.-R., Song, M. 2004. Characterizing Algogenic Organic Matter(AOM) and Evaluating Associated NF Membrane Fouling. Water Research 38:1427-1438.

    Hoehn, R. C., Barnes, D. B., Thompson, B. C. 1980. Algae as Source of Trihalomethane Precursors. J. AWWA 72:6:344-350.

    Howe, K.J., Ishida, K.P., Clark, M.M. 2002. Use of ATR/FTIR Spectrometry to Study Fouling of Microfiltration Membrane by Natural Waters. Desalination 147:251-255.

    Howell, J.A. 1995. Sub-critical Flux Operation of Microfiltration. Journal of membrane Science 107:165-171.

    Hung, M.T., Liu, C.J. 2006. Microfiltration for Separation of Green Algae from water. Colloid and SurfaceB:Biointerfaces 51:157-164.

    Ioan, C.E., Aberle, T., Burchard, W. 2000. Structure Properties of Dexran 2.Ditute Solution. Macromolecules 33:5730-5739.

    Jacangelo, J.G., Laine, J.M., Cumming, E.W., Adham, S.S. 1995. UF
    with Pretreatment for Removing DBP Precursors. J. AWWA. 87:100-115.

    Jørgensen, N.O.G., Jensen, R.E. 1994. Microbial Fluxes of Free Mono
    saccharides and Total Carbohydrates in Freshwater Determined by PAD
    -HPLC. FEMS Microbiology Ecology 14:79–94

    Jugdaohsingh, R., M. M. Campbell, P. H. Thompson, C. R. Mc-Crohan, K. N. White &Powell J. J. 1998. Mucus Secretion by the Freshwater Snail Lymnaea stagnalis Limits Aluminum Concentrations of the Aqueous environment. Environmental Science and Technology. 32:2591–2595.

    Kim, J.O., Shin, E.B., Bae, W., Kim, S.K., R. H. Kim. 2002. Effect of
    Intermittent Back Ozonation for Membrane Fouling Reduction in
    Microfiltration Using a Metal Membrane. Desalination 143:269-278

    Konno, H. 1993. Settling and Coagulation of Slender Type Diatoms. Water Science and Technology 27:231-240

    Kwon, D. Y., Vigneswaran, S. 1998. Influence of Particle and Size Surface Change on Critical Flux of Cross-flow Microfiltration. Water Science and Technology 38:481-488

    Kwon, D.Y., Vigneswaran, S., Fane, A.G., Aim, R.B. 2000. Experimental
    Determination of Critical Flux in Cross-FlowMicrofiltration. Separation
    and Purification Technology 19:169-181

    Laîne, J.M., Clark, M.M., Mallevialle, J. 1990. Ultrafiltration of Lake
    Waters: Effect of Pretratment on the Partitioning of Organics, THMFP,and Flux. J. AWWA. 82:82-87

    Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1995. Protein Measurement with the Folin Phenol Reagent. Journal Biological Chemistry 193:265-275

    Lee, W., Kang, S., Shin, H. 2003. Sludge Characteristic and their Contribution to Microfiltration in Submerged Membrane bioreactor.
    Journal of Membrane Science 216:217-227

    Lim, A.L., Bai, R. 2003. Membrane fouling and cleaning in microfiltration of activated sludge wastewater. Journal of Membrane Science 216:279-290

    Madaeni S. S., Fane A. G. and Wiley D.E. 1999. Factor influencing critical flux in membrane filtration of activated sludge. Journal of Chemical Technology and Biotechnology 74:539-543

    Maloney, T.E. 1963. Research on Algae Odor. Journal AWWA 46:481-486

    Monchet, P., Bonnelye, V. 1998. Solving algae problems: French xpertise and world-wide application. J. Water SRT-Agua 47:125-141

    Myklestad, S.M. 1995. Release of Extraceullar Products by Phytoplank
    with Special Emphasis on Polysaccharide. Science Total Environment
    165:155-164

    Nagaoka, H., Yamanishi, S., Miya, A. 1998. Modeling of Biofouling by
    Extracellular Polymers in Membrane Separation Actived Sludge. Water
    Science and Technology 38:497-504

    Nakatsuka, S., Nakate, I., Miyano., T. 1996. Drinking Water by Using
    Ultrafiltration Hollow Fiber Membranes. Desalination 106:55-61

    Nguyen, M.L., Westerhoff , P.E.P. 2005. Characteristic and Reactivity of Algae-produced Dissolved Organic Carbon. Journal of Environmental Engineering 131: 1574-1582

    Nicolaisen, B. 2002. Development in Membrane Technology for Water
    Treatment. Desalination 153: 355-360

    Nilson, J.A., Digiano, F.A. 1996. Influence of NOM Composition on
    Nanofiltration. J.AWWA 88: 53-66

    Norris, L., Norris , R.E., Calvin, M. 1955. A Survey of the Rates and Products of Short Term Photosynthesis in Plants of Nine Phyla.
    Journal of Experimental Botany 6:64

    Olvera-Ramõrez, R., Coria-Cedillo, M., Cañizares-Villanueva, R. O., Martinez-Jerónimo, F., Ponce-Noyola T., Rios-Leal E.2000. Growth Evaluation and Bioproducts Characterization of Calothrix sp. Bioresource Technology 72:121-124

    Ridgway, H.F., Flemming, H.-C. 1996. Membrane Biofouling, Water
    treatment Membrane Process. McGraw-Hill, New York.

    Rosenberger, S., Evenblij, H., Poele, S.T., Wintgens, T., Laabs, C. 2005. The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes—six case studies of different European research groups. Journal of Membrane Science 263:113-126

    Sablani, S.S., Goosen, M.F.A., Belushi, R.A., Wilf, M. 2001. Concentrat
    -ion Polarization in Ultrafiltration and Reverse Osmosis: aCritical Review Desalination 141:269-289

    Suffet, I. M., Mallevialle, J. and Kawczynsk; E. 1995. Advances in Taste-and-odor Treatment and Control AWWA Research Foundation, Denver, CO.

    Shen, L.Q., Xu, Z.K., Liu, Z.M., Y. Y. Xu. 2003. Ultrafiltration Hollo
    Fiber Membranes of Sulfonated Polyetherimide/ polyetherimide Blends
    Preparation, Morphologies and Anti-fouling Properties Journal of Membrane Science 218:279-293

    Tien, C.J., Krivtsov, V., Levado, E., Sigee, D.C., White, K., N. 2002.
    Quccurrence of Cell-associated Mucilage and Soluble Extracellular
    Polysaccharides in Rostherne Mere and their Possible Significance
    Hydrobiologia. 485:245-252

    Wang, L., L. Song. 1999. Flux Decline in Crossflow Microfiltration and
    Ultrafiltration: Experimental Verification of Fouling Dynamics. Journal
    of Membrane Science 160: 41-50

    Williams, A.G., Wimpenny, J.W.T. 1978. Exopolysaccharide Productionby Peseudomonas NCIB 11264 Grown in Continuous Culture. Journal of General and Applied Microbiology 104:47-57

    Wingender, J., Neu, T.R., Flemming, H.C. 1999. Microbial Extracellular Polymeric Substances: Characterisation, Structure and Function. Springer-Verlag Berlin Heidelberg

    WHO 1999. Toxic Cyanobacteria in Wate, I. Chorus and J. Bartram, editors, E&FN Spon, London.

    Yiantsios, S.G., Karabelas, A.J. 2000. An Experimental Study of Humic
    Acid and Powerwd Activated Carbon Deposition on UF Membranes and Their Removal by Backwashing. Conference on membranes in Drinking & Industrial Water Production, Desalination Publication. 1:357-371

    Yun, M.A., Yeon, K.M., Park, H.-R., Lee, C., -H., Chun, J., Lim, D.L. 2006. Characterization of Biofilm Structure and its Effect on Membrane Permeability in MBR for Dye Wastewater treatment. Water Research 40:45-52

    行政院環保署2004.統計年報
    陳是瑩、曾怡禎 1984. “湖生態的研究I: 澄清湖水質與藻類季節性變遷的研究,”中華民國自來水協會第一屆給水技術研討會論文集

    陳是瑩、曾怡禎 1986. 澄清湖藻類圖鑑, 國立成功大學.

    高山鎮 1999.薄膜阻塞現象控制之研究,國立成功大學碩士論文.

    葉宣顯等 1999.澄清湖高級淨水處理模型廠試驗研究(第一年),台灣省自來水公司委託研究報告.

    葉宣顯等 2001.澄清湖高級淨水處理模型廠試驗研究(第二年),台灣省自來水公司委託研究報告.

    曾四恭 1996.優養化水體中藻類生長對淨水處裡水質之影響,中華民國自來水協會研究報告.

    下載圖示 校內:立即公開
    校外:2007-08-14公開
    QR CODE