簡易檢索 / 詳目顯示

研究生: 劉晉宏
Liu, Chin-Hung
論文名稱: 基於多目標基因演算法之不規則智慧反射面拓樸設計
Irregular Intelligent Reflecting Surface Topology Design by Using Multi-Objective Genetic Algorithm
指導教授: 曾繁勛
Tseng, Fan-Hsun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 88
中文關鍵詞: 基因演算法不規則智慧反射面主辦互耦合
外文關鍵詞: genetic algorithm, irregular intelligent reflecting surface, main lobe, mutual coupling
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於無線通訊的需求不斷增加,智慧反射面被視為一項輔助訊號傳輸並解決傳輸量問題的潛力技術,智慧反射面是由許多反射元件均勻排列組成的面板,每個反射元件會調整入射訊號的振幅和相位並反射訊號,幫助使用者獲得更好的收訊品質。現有文獻指出不規則智慧反射面提升收訊強度的潛力,且反射元件間存在的互耦合對於智慧反射面的訊號傳輸呈負面影響,如何調整不規則智慧反射面上反射元件的位置以降低互耦合,進而改善使用者的收訊品質是本篇論文的主要目標。許多現有文獻使用啟發式演算法研究不規則智慧反射面的相關問題,但由於啟發式演算法無法保證其解的最佳性,因此本論文選擇使用元啟發式演算法;因為陣列狀的智慧反射面可以透過零和一表示每個反射元件的使用與否,適合對應至由零和一組成的基因演算法染色體,因此本論文提出設計智慧反射面拓樸的單目標和多目標基因演算法。除了對互耦合進行優化外,傳播通道也是影響訊號強度的關鍵因素,故所提演算法分別或同時優化互耦合和通道,亦即透過交配、突變等機制尋找低互耦合、高品質通道或是兩者兼具的智慧反射面拓樸;此外,所提多目標基因演算法導入訊號主瓣的概念改良反射元件被選擇使用的機率,越接近訊號主瓣的反射元件被選擇使用的機率越高,透過此方式,所提多目標基因演算法可以更快速地找到優質的智慧反射面拓樸,模擬結果顯示,本論文提出的多目標基因演算法設計之不規則智慧反射面拓樸可顯著改善使用者的收訊品質。

    With the uninterrupted wireless communication demands, intelligent reflecting surface (IRS) is regarded as a promising technology that can be used to assist signal transmission and to address transmission volume problems. IRS is a planar surface consisting of a large number of passive reflective elements. Each reflective element adjusts the amplitude and phase of the incident signal and reflects the signal, so that user equipment (UE) can obtain a better received signal. Existing literatures pointed out that the irregular IRS can strength UE’s received signal, but the mutual coupling between reflective elements has a negative impact. How to determine the position of the reflective elements on an irregular IRS for reducing mutual coupling effect and improving received signal is the main goal of this thesis. Many existing literatures use heuristic algorithms to solve the problems of irregular IRS. However, heuristic algorithms cannot guarantee the optimality of their solutions, thereby this thesis utilizes meta-heuristic algorithms. Because the topology of irregular IRS can intuitively use 0 or 1 to represent selected and unselected elements, which is quite similar to chromosomes in genetic algorithm (GA), single-objective and multi-objective genetic algorithms (MOGA) are proposed to design irregular IRS topology. In addition to mutual coupling, propagation channel is also vital to received signal. The proposed algorithm optimizes mutual coupling and channels separately or simultaneously. Through crossover, mutation and other operations to find an irregular IRS topology with low mutual coupling, high-quality channels or both at the same time. In addition, the proposed MOGA introduces the concept of the main lobe to modify the probability of the element being selected. The closer the element to the main lobe, the higher the probability of being selected. Therefore the proposed MOGAs can find better IRS topology more quickly. Finally, simulation results show that the proposed MOGA algorithm is capable of finding an irregular IRS topology with superior received signal for UEs compared with other methods.

    摘要 I Abstract II 致謝 IV Directory V Table of Contents VII List of Figures VIII Chapter 1 Introduction 1 1.1 Intelligent Reflecting Surface 1 1.2 Motivation 3 1.3 Contributions 3 1.4 The Architecture of Thesis 4 Chapter 2 Related Works 5 2.1 Irregular Intelligent Reflecting Surface 5 2.2 Mutual Coupling 6 2.3 Summary of the Related Works and the Proposal 7 Chapter 3 Problem Formulation 9 3.1 System Model 9 3.2 Problem Definition 13 Chapter 4 Proposed Methods 20 4.1 Encoding of the Chromosome 21 4.2 The Design of the Single Objective GA 22 4.2.1 Initial Population 22 4.2.2 Fitness Function 23 4.2.3 Selection 24 4.2.4 Crossover 24 4.2.5 Mutation 25 4.2.6 Termination 26 4.3 The Design of the Multi-Objective GA 26 4.3.1 Initial Population 27 4.3.2 Fitness Function 28 4.3.3 Selection 28 4.3.4 Crossover 29 4.3.5 Mutation 30 4.3.6 Terminate 31 4.4 Generate the Specified Probability Distribution 31 4.4.1 Find the Direction of the Main Lobe 32 4.4.2 Create the Bivariate Gaussian Distribution 34 4.4.3 Normalization 34 4.5 Details for Multiple Probability MOGA 36 Chapter 5 Simulation Results 37 5.1 Compared Benchmarks 37 5.2 Single Objective GA - Mutual Coupling 39 5.3 Single Objective GA – Channel 45 5.4 From GA to MOGA 49 5.4.1 Weight Decision 51 5.4.2 Performance Comparison 53 5.5 From Equal Prob. MOGA to Specified Prob. MOGA 56 5.5.1 Mechanism Comparison 58 5.5.2 Performance of proposed equal prob. MOGA and specified prob. MOGA 60 5.6 From Single to Multiple Prob. Distribution 67 Chapter 6 Conclusions and Future Works 71 Reference 73

    [1] Q. Wu, S. Zhang, B. Zheng, C. You and R. Zhang, “Intelligent reflecting surface-aided wireless communications: A tutorial,” IEEE Transactions on Communications, vol. 69, no. 5, pp. 3313-3351, May 2021.
    [2] F.-H. Tseng, Y.-S. Liang, Y.-W. Ti, and C.-M. Yu, “Intelligent reflecting surface-aided network planning,” IET Communications, vol. 16, no. 20, pp. 2406-2413, Dec. 2022.
    [3] L. Yang, P. Li, F. Meng and S. Yu, “Performance analysis of RIS-assisted UAV communication systems,” IEEE Transactions on Vehicular Technology, vol. 71, no. 8, pp. 9078-9082, Aug. 2022.
    [4] S. Sugiura, Y. Kawai, T. Matsui, T. Lee and H. Iizuka, “Joint beam and polarization forming of intelligent reflecting surfaces for wireless communications,” IEEE Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1648-1657, Feb. 2021.
    [5] Y. Pan, K. Wang, C. Pan, H. Zhu and J. Wang, “Sum-rate maximization for intelligent reflecting surface assisted terahertz communications,” IEEE Transactions on Vehicular Technology, vol. 71, no. 3, pp. 3320-3325, March 2022.
    [6] Y. Chen, B. Zhang, M. Ding, D. López-Pérez, M. Hassan, M. Debbah, Z. and D. Chen, “Downlink performance analysis of intelligent reflecting surface-enabled networks,” IEEE Transactions on Vehicular Technology, vol. 72, no. 2, pp. 2082-2097, Feb. 2023.
    [7] H.-K. Hong and F.-H. Tseng, “Ring-based intelligent reflecting surface placement for 5G and beyond,” in Proc. The 27th IEEE Symposium on Computers and Communications (ISCC 2022), Rhodes, Greece, June 30 - July 2, 2022, pp. 1-6.
    [8] M. Jiang, Y. Li, G. Zhang and M. Cui, “Achievable rate region maximization in intelligent reflecting surfaces-assisted interference channel,” IEEE Transactions on Vehicular Technology, vol. 70, no. 12, pp. 13406-13412, Dec. 2021.
    [9] Y. Wang, Z. Lian, Y. Wang, Y. Su, B. Jin and Z. Zhang, “Geometry-based UAV-MIMO channel model for intelligent reflecting surface-assisted communication systems,” IEEE Transactions on Vehicular Technology, vol. 73, no. 1, pp. 14-27, Jan. 2024.
    [10] H. Hashida, Y. Kawamoto and N. Kato, “Adaptive pilot interval optimization for intelligent reflecting surface-aided communication systems,” IEEE Transactions on Vehicular Technology, vol. 71, no. 7, pp. 7963-7966, July 2022.
    [11] C. Chen, Y. Niu, B. Ai, R. He, Z. Han, Z. Zhong, N. Wang, and X. Su, “Joint design of phase shift and transceiver beamforming for intelligent reflecting surface assisted millimeter-wave high-speed railway communications,” IEEE Transactions on Vehicular Technology, vol. 72, no. 5, pp. 6253-6267, May 2023.
    [12] S. Zargari, A. Khalili, Q. Wu, M. Robat Mili and D. W. K. Ng, “Max-min fair energy-efficient beamforming design for intelligent reflecting surface-aided SWIPT systems with non-linear energy harvesting model,” IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 5848-5864, June 2021.
    [13] K. Zhi, C. Pan, H. Ren and K. Wang, “Statistical CSI-based design for reconfigurable intelligent surface-aided massive MIMO systems with direct links,” IEEE Wireless Communications Letters, vol. 10, no. 5, pp. 1128-1132, May 2021.
    [14] Z. Peng, T. Li, C. Pan, H. Ren, W. Xu and M. D. Renzo, “Analysis and optimization for RIS-aided multi-pair communications relying on statistical CSI,” IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3897-3901, April 2021.
    [15] J. Dai, Y. Wang, C. Pan, K. Zhi, H. Ren and K. Wang, “Reconfigurable intelligent surface aided massive MIMO systems with low-resolution DACs,” IEEE Communications Letters, vol. 25, no. 9, pp. 3124-3128, Sept. 2021.
    [16] Y. Qi, H. Fang, Z. Dai, L. Yang and Y. Zhang, “Beamforming Optimization for Cell-Free MIMO Systems Aided by Irregular RIS,” in Proc. 2023 IEEE 23rd International Conference on Communication Technology (ICCT), Wuxi, China, 2023, pp. 815-820.
    [17] E. O. Frimpong, B.-H. Oh, T. Kim, and I. Bang, “Physical-layer security with irregular reconfigurable intelligent surfaces for 6G networks,” Sensors, vol. 23, no. 4, pp. 1-15, Feb. 2023.
    [18] W. Zhang, L. Wang, H. Mao, Z. Wang, and W. Wu, “Throughput maximization for irregular reconfigurable intelligent surface assisted NOMA systems,” EURASIP Journal on Advances in Signal Processing, article 111, pp. 1-21, Nov. 2023.
    [19] Z. -Q. Luo and S. Zhang, "Dynamic Spectrum Management: Complexity and Duality," in IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 1, pp. 57-73, Feb. 2008.
    [20] R. Su, L. Dai, J. Tan, M. Hao and R. MacKenzie, “Capacity enhancement for reconfigurable intelligent surface-aided wireless network: From regular array to irregular array,” IEEE Transactions on Vehicular Technology, vol. 72, no. 5, pp. 6392-6403, May 2023.
    [21] J.-C. Chen, “Capacity improvement for intelligent reflecting surface-assisted wireless systems with a limited number of passive elements,” IEEE Wireless Communications Letters, vol. 11, no. 4, pp. 801-805, April 2022.
    [22] F.-H. Tseng, C.-H. Liu, H. -H. Cho, C. -Y. Chen, “Irregular element selection for intelligent reflecting surface with mutual coupling,” 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring ), Singapore, June 24-27, 2024, pp. 1-5.
    [23] B. Liu and D. Li, “Low-complexity joint on-off control of reflecting elements and beaforming design in RIS-aided wireless systems,” IEEE Wireless Communications Letters, April 2024, early access.
    [24] H. Chu, X. Pan, J. Jiang, X. Li and L. Zheng, “Adaptive and robust channel estimation for IRS-aided millimeter-wave communications,” IEEE Transactions on Vehicular Technology, April 2024, early access.
    [25] E. Bjoernson, “Optimizing a binary intelligent reflecting surface for OFDM communications under mutual coupling,” in Proc. The 25th International ITG Workshop on Smart Antennas (WSA 2021), French Riviera, France, 2021, pp. 1-6.
    [26] S. Hassouna, M. A. Jamshed, M. Ur-Rehman, M. A. Imran and Q. H. Abbasi, “Investigating the data rate of intelligent reflecting surfaces with mutual coupling and EMI,” in Proc. 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 2023, pp. 1-6.
    [27] P. Zheng, X. Ma and T. Y. Al-Naffouri, "On the Impact of Mutual Coupling on RIS-Assisted Channel Estimation," IEEE Wireless Communications Letters, vol. 13, no. 5, pp. 1275-1279, May 2024.
    [28] E. Björnson, H. Wymeersch, B. Matthiesen, P. Popovski, L. Sanguinetti and E. de Carvalho, "Reconfigurable Intelligent Surfaces: A signal processing perspective with wireless applications," IEEE Signal Processing Magazine, vol. 39, no. 2, pp. 135-158, March 2022.
    [29] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks: Spectral, energy, and hardware efficiency,” Foundations and Trends® in Signal Processing, vol. 11, no. 3-4, pp. 154–655, 2017.
    [30] Universal Mobile Telecommunications System (UMTS); Spatial channel model for Multiple Input Multiple Output (MIMO) simulations (3GPP TR 25.996 version 16.0.0 Release 16), ETSI TR 125 996, Sep. 2020.

    無法下載圖示 校內:2027-08-01公開
    校外:2027-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE