| 研究生: |
林俊勳 Lin, Chun-Hsun |
|---|---|
| 論文名稱: |
原子力顯微術於電極界面現象之評估與其應用 Estimation on Interface Phenomenon of Electrode Using Atomic Force Microscopy and Its Applications |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 毛細管電泳 、電雙層 、介面現象 、原子力顯微鏡 、電滲流 |
| 外文關鍵詞: | interface phenomenon, AFM, FET-flow, electrical double layer |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近十年來原子力顯微鏡在表面科學與微觀界面量測上,扮演著非常重要之角色,故本研究使用原子力顯微鏡量測液相溶液與固相電極界面電雙層結構,藉以計算電極表面之介達電位(ζ potential)。因在毛細管電泳中,電滲流效應來自外加驅動高電壓(60 V/cm)與流體之離子濃度分布(電雙層)之相互作用力而驅動流體,故此電雙層之結構為微流體控制之主要因素且隨著管道的縮小而增大其影響效果。在一般物理化學及電化學中,電雙層之離子分布範圍是以理論所推算出來(約1~100 nm),以往較無適當之儀器對此結構做直接之觀察與量測,在本研究中想應用原子力顯微鏡可操作於液相之特性,藉由施加不同電壓於誘發層時,量測探針所受到之偏折量而將電雙層結構之大小及影響之範圍給量化。結果顯示以三極式電化學法施加不同電壓於裸金表面、18個碳鏈的octadecanethiol修飾之金表面與10個碳鏈的decanethiol修飾之金表面,其電雙層範圍與力量隨著電壓增加而增大,由Butt’s模型反推計算出之電雙層介達電位與由毛細管電泳之電滲流求得之介達電位有一良好之相關性(R2=0.983)。本研究並以原子力顯微鏡觀察不同修飾時間與方法下之電極表面與自我組裝分子之結構變化,以評估此一單分子層於電極表面之形成過程與修飾程度,寄望於獲得最佳之修飾絕緣效果以應用於可控式場效電滲流晶片之絕緣層修飾。結果顯示以滴定法修飾10個碳鏈的decanthiol所獲得之之堆積層最厚( 約400 nm),其表面所能誘發之電雙層與介達電位皆為最小,顯示此分子之絕緣效果較其他分子為佳。本研究提供一方向於微觀界面流體操控之效能評估,寄望此一技術能於微流體操控上提供一更精確與基礎之研究。
Atomic force microscopy is a powerful tool to measure the nano-scale things and phenomenon. And many macroscopic circumstances come from the micro or nano-scale changes. In this study, we want to measure the electrical double layer to quantify the efficiency of FET-flow of capillary electrophoresis (CE) chip. The motion of electroosmotic flow (EOF) in CE chip comes from the interaction between applied electric field and zeta (ζ) potential that form the body force to drive the liquid in the microchannel. The regulation way of EOF can be easily achieved by applying an additional electric field on the outer surface of the capillary. In order to precisely control the fluid in microchannel, the value and the range of ζ potential should be quantified. In this study, we use atomic force microscopy (AFM) to measure the different electrical double layer induced by applying perpendicular potential directly.
The results show that the correlation between two methods (AFM and current monitoring method) to measure the ζ potential of the 18-ODT-Au electrode is good (R2 = 0.983). The proposed approach provides a tool to evaluate the efficiency of induced voltage in different materials and buffer solutions. With understanding of this interface phenomenon, we wish to control the microfluid more precisely in the biochip.
1. Wang, B.; Abdulali-Kanji, Z.; Dowell, E.; Horton J. H.; Oleschuk, R.D. “Surface characterization using chemical force microscopy and the flow performance of modified polydimethysiloxane for microfluidic device applications.” Electrophoresis 2003, 24, 1442-1450.
2. Harriscd, D. J.; Manz, A.; Fan, Z.; Ludi, H.; Widmer, H. M. “Capillary electrophoresis and sample injection systems integrated on planar glass chip.” Anal. Chem. 1992, 64, 1928-1932.
3. Sniadecki, N. J.; Lee, C. S.; Beamesderfer, M.; DeVoe, D. L. “Field effect flow control in polymer micro channel networks.” Conference on Solid-State Sensors, Boston, MA 2003, 682-685.
4. Lee, C. S.; Blanchard, W. C.; Wu, C. T. “Direct control of the electroosmosis in capillary zone electrophoresis by using an external electric field.” Anal. Chem. 1990, 62, 1550-1552.
5. Hayes, M. A.; Keterpal, I.; Ewing, A. G. “Effects of buffer pH on electroosmotic flow control by an applied radial voltage for capillary zone electrophoresis.” Anal. Chem., 1993, 65, 27-31.
6. Schasfoort, R. B. M.; Schlautmann, S.; Hendrikse, J.; van den Berg, A. “Field-effect flow control for microfabricated fluidic networks.” Science 1999, 286, 942-945.
7. Hagenstrom, A.; Schneeweiss, M. A.; Kolb, D. M. “Modification of a Au (111) electrode with ethanthiol. 1. Adlayer structure and electrochemistry. ” Langmuir 1999, 15, 2435-2443.
8. 科學月刊著,諾貝爾的榮耀-化學桂冠,天下文化出版社:台北,1999
9. http://www.geocities.com/bioelectrochemistry/tiselius.htm
10. Iaasq, H.J. “A decade of capillary electrophoresis.” Electrophoresis, 2000, 21, 1921-1939.
11. Jorgenson, J. W.; Lukacs, k. D. “Zone electrophoresis in open –tubular glass capillaries.” Anal. Chem. 1981, 53, 1298-1302.
12. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Application: 2nd Edition; John Wiley & Sons: New York, 2000; Chapter 13.
13. Hayes, M. A.”Extension of external voltage control of electroosmosis to high pH buffers. ” Anal. Chem. 1999, 71, 3793-3798.
14. Kašička, V.; Zdenĕk, P.; Sázelová, P.; Chiari, M.; Mikšik, I., Deyl, Z. “External electric field control of Electroosmotic flow in non-coated and coated fused-silica capillaries and its application for capillary electrophoretic separations of petides.” J. Chromatogr. B 2000, 741, 43-54.
15. Hayes, M. A.; Ewing, A. G. “Eelectroosmotic flow control and morning with an applied radial voltage for capillary zone electrophoresis.” Anal. Chem. 1992, 64, 512-516
16. Wu, C. T.; Huang, T. L.; Lee, C.S. “Dispersion studies of capillary electrophoresis with direct control of electroosmosis.” Anal. Chem. 1993, 65, 568-571.
17. Huang, T. L.; Tsai, P.; Wu, C. T.; Lee, C. S. “Mechanistic studies of electroosmotic control at the capillary-solution Interface.“ Anal. Chem. 1993, 65, 2887-2893.
18. Polson, N. A.; Hayes, M. A.; “Electroosmotic flow control of fluids on a capillary electrophoresis microdevice using an applied external voltage.” Anal. Chem. 2000, 72, 1088-1092.
19. Mcknight, T. E.; Culbertson, C.T.; Jacobson, S.C.; Ramsey, J. M. “Electroosmotically induced hydraulic pumping with integrated electrode on microfluidic devices.” Anal. Chem. 2001, 73, 4045-4049.
20. Buch, J. S.; Wang, P.C.; DeVoe, D. L., Lee, C.S. “Field-effect flow control in a polydimethylsiloxane-based microfluidic system.” Electrophoresis 2001, 22, 3902-3907.
21. Israelachvili, J. N. “Intermolecular and surface force: 2nd Edition.” Academic press limited, London, 1985, Chapter 2 and 6.
22. 原子科學史,利納‧德佛裏斯,藝文印書館,民國八十年九月初版
23. Morris, V. J., Kirby, A. R., Gunning, A. P., Atomic Force Microscopy for Biologists, Imperial College Press: London, 1999, Chapter 1-4.
24. Cappella, B.; Dietler, G.; “Force-distance curves by atomic force microscopy.” Surf. Sci. Rep. 1999, 34, 1-104.
25. Takano, H.; Kenseth, J. R.; Wong, S.-S.; O’Brien, J. C.; Porter, M. D. “Chemical and biochemical analysis using scanning force microscopy.” Chem. Rev. 1999, 99, 2845-2890.
26. Cappella, B.; Baschieri, P.; Frediani, C.; Miccoli, P.; Ascoli, C. “Force-distance curves by AFM.” IEEE Eng. Med. Biol. 1997, 58-65.
27. Domke, J.; Radmacher, M.; “Measuring the elastic properties of thin polymer films with the atomic force microscope.” Langmuir 1998, 14, 3320-3325.
28. Akhremitchev, B. B.; Walker, G. C.; “Finite sample thickness effects on elasticity determination using atomic force microscopy.” Langmuir 1999, 15, 5630-5634.
29. Radmacher, M.; ”Measuring the elastic properties of biological samples with the AFM.” IEEE Eng. Med. Biol. 1997, 16, 47-57.
30. Lehenkari, P. P.; Horton, M. A.” Single Integrin molecule adhesion forces in intact cells measured by atomic force microscopy.” Biochem. Biophy. Res. Co. 1999, 259, 645-650.
31. Fang, H. H. P.; Chan, K. Y.; Xu, L. C. ”Quantification of bacterial adhesion forces using atomic force microscopy (AFM).” J. Microbiol. Meth. 2000, 40, 89-97.
32. Ulman, A. “Formation and structure of self-assembled monolayer.” Chem. Rev. 1996, 96, 1533-1554.
33. Gooding, J. J.; Mearns, F.; Yang, W. and Liu, J. “Self-assembled monolayers into 21ST century: recent advances and application.” Electroanal. 2003, 15, No.2, Review.
34. Badia, A.; Arnold, S.; Scheumann, V.; Zizlsperger, M.; Mack, J.; Jung, G. and Knoll, W. “Probing the electrochemical deposition and/or desorption of self-assembled and electropolymerizable organic thin films by surface plasmon spectroscopy and atomic force microscopy.” Sensor Actuat. B-Chem. 1999, 54, 145-165.
35. Nuzzo, R.G. and Allara, D.L. “Adsorption of bifunctional organic disulfides on gold surfaces.” J. Am. Chem. Soc. 1983, 105, 4481-4483.
36. Porter, M. D.; Bright, T. B.; Allara D.L. and Chidsey, C. E. D. “Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry.” J. Am. Chem. Soc., 1987, 109, 3559-3568.
37. Frederix, F.; Bonroy, K.; Laureyn, W.; Reekmans, G.; Camppitelli, A.; Dehaen, W. and Maes, G. “Enhanced performance of an affinity biosensors interface based on mixed self-assembled onolayers of thiols on gold” Langmuir 2003, 19, 4351-4357.
38. Chaki, N. K.; Vijayamohanan, K. “Self-assembled monolayers as a tunable platform for biosensor applications” Biosensors & Bioelectronics, 2002, 17, 1-12.
39. Poirier, G. E. and Pylant, E. D. “The self-assembly mechanism of alkanethiols on Au (111).” Science 1996, 272, 1145-1148.
40. Leitner, T.; Friedbacher, G.; Vallant, T.; Brunner, H.; Mayer, U.and Hoffmann, H. “Investigations of the growth of self-assembles octadecylsiloxane monolayers with atomic force microscopy.” Mikrochim. Acta 2000, 133, 331-336.
41. Resch, R.; Grasserbauer, M.; Friedbacher, G.; Vallant, T.; Brunner, H.; Mayer, U. and Hoffmann, H. “In situ and ex situ AFM investigation of the formation of octadecylsiloxane monolayers.” Appl. Surf. Sci. 1999, 140, 168-175.
42. Uchihashi, T.; Ishida, T.; Komiyama, M.; Aahino, M.; Suagawara, Y.; Mizutani, W.; Yokoyama, K.; Morita, S.; Tokumoto, H. and Ishikawa M. “High-resolution imaging of organic monolayers using noncontact AFM.” Appl. Surf. Sci. 2000, 157, 244-250.
43. Jiang, P., Xie, S.-S., Pang, S.-J.; Gao H.-J. “The combining analysis if height and phase images in tapping-mode atomic force microscopy: anew route for the characterization of thiol-coated gold nanoparticles film on solid substrate.” Appl. Surf. Sci. 2002, 191, 240-246.
44. Ichii, T.; Fukuma, T.; Kobayachi, K.; Yamada, H.; and Matsushige, K. “Phase-separated alkanethiol self-assembled monolayers investigated by non-contact AFM.” Appl. Surf. Sci. 2003, 210, 99-104.
45. Hyde, M.E.; Jacobs, R. and Compton, R. G. “In situ studies of metal deposition.” J. Phys. Chem. B 2002, 106, 43, 11075-11080.
46. Everett, W. R.; Fritsch-Faules, I. “Factors that influence the stability of self-assembled organothiols on gold under electrochemical conditions.” Anal. Chim. Acta 1998, 307, 253-268.
47. Yang, D.-F.; Morin, M. “Chronoamperometric study of the reductive desorption of alkanethiol sel-assembled monolayers.” J. Electroanal. Chem. 1998, 441, 173-181.
48. Zhao, B.; Moore, S. J.; Beebe, D. J. “Surface-directed liquid flow inside microchannels.” Science 2001, 291, 1023-1026.
49. Lahann, J.; Mitragotri, S.; Tran, T.-N.; Kaido, H.; Sundaram, J. ; Choi, I. S. ; Hoffer, S.; Somorjai, G. A. and Langer R. “A reversibly switching surface.” Science 2003, 299, 371-374.
50. Jwssamine, M. K. Ng, Gitlin, I., Stroock, A. D., Whitesides G. M. “Components for integrated poly(dimethlsiloxane) microfluicdic systems.” Electrophoresis 2002, 23, 3461-3473.
51. Huang, X., Gordon, M. J., Zare, R.N. “Current-monitoring methods for measuring the electroosmotic flow rate in capillary zone electrophoresis.” Anal. Chem. 1988, 60, 1837-1838.
52. Gaudioso, J., Craighead, H.G. “Characterizing electroosmotic low in microfluidic devices.” J. Chromatogr. A 2002, 971, 249-253.
53. Ren, X., Backman, M., Sims, C., Li, G. P., Allbritton, N. “Electroosmotic properties of microfluidic channels composed poly(dimethylsiloxane).” J. Chromatogr. B 2001, 762, 117-125.
54. Gu, Y.; Li, D. “Theζ-potential of glass surface in contact with aqueous solutions.” J. Colloid Interf. Sci. 2000, 226, 328-339.
55. Israelachvili, J. N. “Intermolecular and surface force: 2nd Edition.” Academic press limited, London, 1985, Chapter 10-7.
56. Bard, A. J.; Stratmann, M. “Encyclopedia of electrochemistry.” Volume 1 : “Thermodynamics and electrified interfaces.” WILEY-VCH, 2002, Chap 2.5
57. Raiteri, R. R.; Grattarola, M.; Butt, H-J. “Measuring electrostatic double-layer forces at high surface potential with the atomic force microscope.” J. Phys. Chem. 1996, 100, 16700-16705.
58. Butt, H-J. “Electrostatic interaction in atomic force microscopy.” Biophys. J. 1996, 60, 777-785
59. Weisenhorn, A.L.; Maivald, P.; Butt, H.- J.; Hansma,P. K. “Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope.” Phy. Rev. B 1992, 45, 11226-11232.
60. Butt, H.-J. “Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope.” Biophy. J. 1996, 60, 1348-1344.
61. Hillier, A.C.; Kim, S; Bard, A. J. “Measurement of double layer forces at the electrode/electrolyte interface using the atomic force microscope: potential and anion dependent interactions.” J. Phys. Chem. 1996, 100, 18808-18817.
62. Lin, X.-Y.; Creuzet, F.; Hervĕ, A. “Atomic force microscopy for local characterization of surface acid-base properties.” J. Phys. Chem. 1993, 97, 7272-7276.
63. Ducker, W. A.; Senden, T.J. “Measurement of forces in liquid using a force microscope.” Langmuir 1992, 8, 1831-1836