簡易檢索 / 詳目顯示

研究生: 劉孟維
liu, mong-wei
論文名稱: 液相製備奈米線
The fabrication of nanowire by aqueous solution
指導教授: 洪昭南
Hong, C. Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 101
中文關鍵詞: 奈米線溶液氧化鋅
外文關鍵詞: ZnO, solution, nanowire, silicon, zinc oxide
相關次數: 點閱:55下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中主要探討三個主題,第一是氧化鋅奈米線的成長,第二部分是氧化鋅/氧化矽核殼奈米線,最後一部份是用濕蝕刻的方式製備矽的奈米線。
    首先,對於氧化鋅奈米線的成長,採用水熱法的方式進行研究。藉由改變前趨物的濃度比、反應的溫度、溶劑的選取,來選擇最後的成長條件。無論如何,氧化鋅皆沿著[0001]成長,螢光光譜分析中,波長在387nm有明顯的激發光譜。
    第二是製備氧化鋅/氧化矽核殼奈米線,在異丙醇的環境中,前趨物為TEOS,氨水幫助水解,在重複的實驗下,我們期待能填滿氧化矽分佈不均所形成的孔洞,經由硫酸蝕刻後,我們可以用EDS分析,是否有氧化鋅殘留下來,來印證自己的實驗。
    最後,利用金屬顆粒當觸媒,使氫氟酸具有高選擇性的蝕刻矽基板,藉此獲得所欲的圖形。我們蒸鍍金屬銀分佈在矽基板上,藉此用簡易的方式,製作矽的一維奈米結構。

    In this paper, we can mainly divide our experiments into three topics: zinc-oxide (ZnO) nanowire growth, ZnO/SiO2 core-shell structure synthesis, and fabrication of Si nanowire via etching methodology.
    Firstly, we focus on the fabrication of ZnO nanowire through hydrothermal method. We could optimize the growth condition by changing the precursor concentration, reaction temperature, and solvents. From the tunneling electron microscopy analysis (TEM), it indicates that the as-synthesis ZnO nanowire grow along the [0001] direction. And the photoluminescence (PL) spectra indicate a sharp and strong excitation peak locates at 387 nm wavelength. Thus, we could conclude that the prepared nanowires possess high single crystal qualities.
    Secondly, we subsequently fabricate ZnO/SiO core-shell structure with TEOS which serves as precursor. In this experiment, we utilize ammonium hydroxide to facilitate hydrolysis in iso-propanol solution. It is expectable that we could fill up the pin-hole, caused by the silicate distribution without uniformity, after several times coating treatment. We could prepare SiO nanotube through etching process with sulfuric acid, and corroborate our result with examining the residue of zinc oxide by EDS analysis.
    In the last section, we study on the fabrication of Si nanowire through wet etching. We deposit silver nanoparticles, which serve as catalyst and enhance high selectivity of etching in HF solution. Consequently, we could prepare 1-dimentional Si nanostructure with this easy and simple method.

    中文摘要..................................................I 英文摘要.................................................II 致謝....................................................III 目錄......................................................V 表目錄..................................................VII 圖目錄.................................................VIII 第一章 緒論 ............................................1 1-1 前言..................................................1 1-2積體電路...............................................2 1-3積體電路的製造.........................................3 1-4奈米元件的瓶頸.........................................3 1-5新的奈米技術...........................................4 1-6可撓曲顯示器...........................................5 第二章理論基礎與文獻回顧.................................10 2-1 成長一維奈米結構之方法...............................10 2-1-1 非等方向性之晶體成長...............................11 2-1-2以Vapor-liquid-solid transport process(VLS)方法成長...................................................... 12 2-1-3 Metal Organic Chemical Vapor Deposition (MOCVD)....12 2-1-4 基板輔助成長法.....................................13 2-1-5 氧化物輔助成長法:..............................14 2-1-6 溶膠-凝膠法(Sol-Gel method).....................14 2-1-7 水熱合成法......................................16 2-2 氧化鋅...............................................17 2-2-1 氧化鋅奈米結構............................19 2-3 殼核Core-shell ......................................19 2-4 奈米線組裝...........................................21 2-4-1 間接組裝..................................21 2-4-2 直接組裝(self align)......................22 2-6奈米線的應用..........................................23 2-6-1 奈米線電晶體..............................23 2-6-2 奈米線雷射................................23 2-6-3奈米線場發射...............................23 2-6-4奈米線感測器...............................24 2-6-5奈米線光纖.................................25 2-7 研究目的.............................................26 2-7-1回顧................................................26 2-7-2 研究方向...........................................26 2-7-3 選取材料...........................................27 第三章實驗方法與步驟.....................................42 3-1 實驗流程.............................................42 3-2 儀器設備.............................................43 3-2-1 高壓釜....................................43 3-2-2 烘箱......................................43 3-2-3離心機.....................................43 3-3 實驗藥品.............................................44 3-4 實驗步驟.............................................45 3-4-1 一維氧化鋅奈米結構之實驗步驟..............45 3-4-1-1 鐵氟龍(反應爐)清洗......................45 3-4-1-2 鋅離子溶液與氫氧根離子溶液.............45 3-4-1-3 冰浴系統................................45 3-4-1-4 烘箱的預熱..............................46 3-4-1-5 溶液的混和..............................46 3-4-1-6 產品的清洗..............................46 3-4-1-7 烘乾....................................46 3-4-2 一維氧化鋅奈米線核殼(core-shell)之製備.............47 3-4-2-1 氧化鋅奈米線的分散......................47 3-4-2-2 TEOS溶液................................47 3-4-2-3 混和兩溶液備製核殼......................47 3-4-2-4 產品的清洗..............................47 3-4-2-5 烘乾....................................48 3-4-2-6 氧化鋅/氧化矽核殼奈米線.................48 3-4-3 用蝕刻方式製備矽的奈米線...........................48 3-4-3-1 前處理.......................................48 3-4-3-1-1 配置蝕刻溶液...............................49 3-5 實驗分析.............................................49 3-5-1 掃瞄式電子顯微鏡..........................49 3-5-2 X光繞射儀.................................50 3-5-4螢光光譜儀.................................51 3-5-5穿透式電子顯微鏡.................................51 3-6 實驗設備.............................................52 第四章結果與討論.........................................54 4-1利用水熱法成長氧化鋅奈米線............................54 4-1-1 探討水熱法成長變因對氧化鋅奈米線的影響..........55 4-1-1-1離子濃度比對氧化鋅奈米線成長的影響.............55 4-1-1-1-1 表面型態分析................................55 4-1-1-1-2微結構分析...................................56 4-1-1-1-3 螢光光譜儀之光學性質分析....................56 4-1-1-1-4 成長機制的探討..............................57 4-1-1-2溶劑對氧化鋅奈米線成長的影響...................58 4-1-1-2-1 表面型態分析................................58 4-1-1-2-2微結構分析...................................58 4-1-1-2-3 螢光光譜儀之光學性質分析....................59 4-1-1-2-4 成長機制的探討..............................59 4-1-1-3 前趨物對氧化鋅奈米線成長的影響:...............60 4-1-1-3-1 表面型態分析................................60 4-1-1-3-2 穿透式電子顯微鏡分析........................60 4-1-1-3-3螢光光譜儀之光學性質分析.....................61 4-1-1-3-4微結構分析...................................61 4-1-1-3-5 成長機制的探討..............................61 4-1-1-4溫度對氧化鋅奈米線成長的影響:..................61 4-1-1-4-1 表面型態分析................................62 4-1-1-4-2微結構分析...................................63 4-1-1-4-3螢光光譜儀之光學性質分析.....................63 4-1-1-4-4穿透式電子顯微鏡分析.........................64 4-1-1-4-5 成長機制的探討..............................65 4-1-1-5成核時系統溫度 冰浴的原因......................65 4-1-1-6 成長機制的探討小結............................66 4-2 製備氧化鋅奈米線核殼氧化矽...........................77 4-2-1 TEOS 濃度對氧化矽生成的影響.....................79 4-2-1-1 表面型態分析..................................79 4-2-1-2 微結構分析....................................79 4-2-1-3穿透式電子顯微鏡分析...........................80 4-2-1-4 成長機制的探討................................80 4-2-2 重複披覆TEOS對氧化矽的影響......................81 4-2-2-1 表面型態分析..................................82 4-2-2-2穿透式電子顯微鏡分析...........................82 4-2-2-3 披覆兩層氧化矽的探討..........................82 第五章用蝕刻矽基板的方式形成矽的奈米線...................87 5-1 雙氧水濃度對蝕刻的影響............................88 5-1-1表面型態分析.....................................88 5-1-2 蝕刻機制........................................89 5-2氫氟酸濃度對蝕刻的影響.............................90 5-2-1表面型態分析.....................................91 5-1-2 蝕刻機制........................................91 5-3 時間對蝕刻的影響..................................92 5-3-1表面型態分析.....................................92 5-3-2 反射率測定......................................92 第六章結論...............................................97 第七章參考文獻...........................................98

    [1]Donald A. Neamen Semiconductor Physics & Devices, Third
    Edition
    [2]Sumio Iijima, Nature,354,56(1991)
    [3]Y.Xia,PYang,Y,Y.Wu,B.Mayer,B.Gates,Y.Ying,F.Kim,H.Yan,
    Adv.Mater. 15,353(2003)
    [4]R.S. Wanger, W.C. Ellis, Appl.Phys.Lett.4,89
    [5]X.F. Duan,C.M.Lieber,Adv.Mater.12,298(2000)
    [6] X.F. Duan,C.M.Lieber,J.Am.Chem.Soc.122,188(2000)
    [7]Wu Y,Yang P.,J.Am.Chem.Soc.123,3165(2001)
    [8]Park W I, Kim D H, Jung S W and Yi G C 2002 Appl. Phys.
    Lett. 80 232
    [9]Park W I, Yi G C, Kim M Y and Pennycook S J 2002 Adv.
    Mater. 14 1841
    [10]Huang M H, Wu Y Y, Feick H, Tran N, Weber E and Yang P
    2001Adv. Mater. 13 113 。
    [11]Q.Zhang,T.S.Chu,H.F.Cheng,N.Wang,S.T.Lee.Mater.SciEng.
    C.16,31(2001)
    [12]S.T.Lee,N.Wang,C.S.Lee,Mater.Sci.Eng.A.286,16(2000)
    [13]R. A. Powell, W. E. Spicer, and J. C. McMenamin Phys.
    Rev. B 6,3056 –3065 (1972)
    [14]Lozano, J.; Fernandez, M.J.; J.L.;Aleixandre, M.;
    Santos, J.P.; Sayago, I.; Arroyo, T.; Cabellos, J.M.;
    Horrillo, M.C. Sensors and Actuators, B: Chemical,
    v 120, n 1, Dec 14, 2006, p 166-171
    [15]Kadota, Michio ; Kando, Hajime IEEE Transactions on
    Ultrasonics,Ferroelectrics, and Frequency Control,
    v 51, n 4, April, 2004, p464-469
    [16]Didenko, Irina S.; Hickernell, Fred S.; Naumenko,IEEE
    Transactions on Ultrasonics, Ferroelectrics, and
    Frequency Control,v 47, n 1, Jan, 2000, p 179-187
    [17]Takehana, M.; Nishino, T.; Sugawara, K.; Sugawara, T.
    Materials Science & Engineering B: Solid-State
    Materials for Advanced Technology, v B41, n 1, Oct,
    1996, p 186-189
    [18]Lin, Feng-Cang; Takao, Yuji; Shimizu, Yasuhiro;
    Egashira, Makoto Sensors and Actuators, B: Chemical,
    v B25, n 1-3 pt 2, Apr, 1995, p843-850
    [19]Banerjee, A.; Ramamohan, T.R.; Patni, M.J. Materials
    Research Bulletin, v 36, n 7-8, May 6, 2001, p 1259- 1267
    [20]Law, J.B.K. Thong, J.T.L. Applied Physics Letters,
    v 88, n 13, 2006,p 133114
    [21]Takagi, Tsuyoshi; Tanaka, Hiroshi; Fujita, Shizuo;
    Fujita, Shigeo Japanese Journal of Applied Physics,
    Part 2: Letters, v 42, n 4 B, Apr 15, 2003, p L401-L403
    [22]Purica, Munizer Budianu, Elena; Rusu, Emil Thin Solid
    Films, v383, n 1-2, Feb, 2001, p 284-286
    [23]Kwon, Chul Han; Hong, Hyung-Ki; Yun, Dong Hyun;
    Lee, Kyuchung; Kim, Sung-Tae; Roh, Young-Hoon;Lee,
    Byung-Hoon Sensors and Actuators, Chemical, v B25,
    n 1-3pt 2, Apr, 1995, p 610-613
    [24]Sahay, P.P. : Journal of Materials Science, v 40,
    n 16, August, 2005,p4383-4385
    [25]Rao, B. Bhooloka Materials Chemistry and Physics,
    v 64, n 1,Mar, 2000, p62-65
    [26]Pavel G. Baranov Sergei B. Orlinskii and Jan Schmidt
    Phys. Rev.Lett. 88, 045504 (2002)
    [27]沈國任,成功大學化工所碩士論文 2003
    [28]Zhong Lin Wang Materials Today, Volume 7, Issue 6,
    2004, Pages 26-33
    [29]Fan, Rong; Wu, Yiying; Li, Deyu; Yue, Min; Majumdar,
    Arun; Yang, Peidong Journal of the American Chemical
    Society, v 125,n 18, May 7, 2003, p 5254-5255
    [30]Woo, Kyoungja; Kim, Byeong-Seon Progress in
    Biomedical Optics and Imaging - Proceedings of SPIE,
    v 6036, BioMEMS and Nanotechnology II, 2006,p 60361N
    [31]Bhattacharjee, Baibaswata; Hsu, Chia-Hao; Lu, Chung-
    Hsin;Chang,Walter H. Physica E: Low-Dimensional
    Systems and Nanostructures, v 33, n 2, July,2006, p
    388-393
    [32]An, L.M.; Sun, P.N.; Liu, L.; Feng, X.; Kong, L.P.;
    Bi, H.N.; Yu, B.; Kong,X.G.; Liu, Y.C. Biomedical
    Optics, 2006, p 60261H
    [33]Xie, Renguo; Kolb, Ute; Li, Jixue; Basche, Thomas;
    Mews, Alf Journal of the American Chemical Society,
    v 127, n 20, May 25,2005, p 7480-7488
    [34]Mews, A.; Eychmueller, A.; Giersig, M.; Schooss, D.;
    Weller, H.Journal of Physical Chemistry, v 98, n 3,
    Jan 20, 1994, p 934-941
    [35]Eychmuller, A.; Vossmeyer, T.; Mews, A.; Weller, H.
    Journal of Luminescence, v 58, n 1-6, Jan, 1994, p
    223-226
    [36]Weller, Horst; Vossmeyer, Tobias; Eychmueller,
    Alexander;Materials Research Society Symposium –
    Proceedings, v 358, 1995, p 213-218
    [37]Whang, Dongmok; Jin, Song; Lieber, Charles M. Japanese
    Journal of Applied Physics, p4465-4470
    [38]Xiangfeng Duan, Yu Huang, Yi Cui, Jianfang Wang,
    Charles M. Lieber Nature 409, 66-69 (04 Jan 2001)
    [39]K. Yamamoto,S Akita and Y.Nakayama,J.Phys. D:
    Appl.Phys. 31 L34
    [40]D. H. Reich, M. Tanase, and A. Hultgren Journal of
    Applied Physics May 15, 2003 Volume 93, Issue 10,
    pp. 7275-7280
    [41]Ming-Shien Hu, Hsin-Li Chen, Ching-Hsing Shen, Lu-
    Sheng Hong,Bohr-Ran Huang, Kuei-Hsien Chen, Li-Chyong
    Chen,Nature Materials 5, 102-106 (01 Feb 2006) Letters
    [42]X. Duan, C. M. Lieber Volume 12, Issue 4 , Pages 298 -
    302
    [43]HOCHBAUM Allon ; RONG FAN ; RONGRUI HE ; PEIDONG
    YANG Nano letters 2005, vol. 5, no3, pp. 457-460
    [45]R. He, D. Gao, R. Fan, A. I. Hochbaum, C. Carraro, R.
    Maboudian,Advanced Materials Volume 17, Issue 17,
    Date: September, 2005, Pages: 2098-2102
    [46]Qian, Fang; Li, Yat; Gradecak, Silvija; Wang, Deli;
    Barrelet, Carl J.;Lieber, Charles M. Nano Letters,
    v 4, n 10, October, 2004, p 1975
    [47]Andrew B. Greytak, Carl J. Barrelet, Yat Li, and
    Charles M. Lieber Appl. Phys. Lett. 87, 151103 (2005)
    [48]Silvija Grade ak, Fang Qian, Yat Li, Hong-Gyu
    Park,Applied Physics Letters, v 87, n 17, Oct 24,
    2005, p 173111
    [49]Gradecak, Silvija; Li, Yat; Wen, Cheng-Yen; Lieber,
    Charles M.Nano Letters, v 5, n 11, November, 2005,
    p 2287-2291
    [50]Zhang, Yongsheng; Yu, Ke; Ouyang, Shixi; Zhu, Ziqiang
    Physica B:Condensed Matter, v 382, n 1-2, Jun 15,
    2006, p 76-80
    [51]Patolsky, Fernando; Cui, Yi; Wang, Wayne U.; Lieber,
    Charles M Nature Biotechnology, v 23, n 10, October,
    2005, p 1294-1301
    [52]Patolsky, Fernando; Lieber, Charles M. Materials
    Today, v 8, n 4, April, 2005, p 20-28
    [53]Duan, Xiangfeng; Huang, Yu; Agarwal, Ritesh; Lieber,
    Charles M.Nature, v 421, n 6920, Jan 16, 2003,
    p 241-245
    [54]Carl J. Barrelet, Andrew B. Greytak, and Charles M.
    Lieber Nano Lett.; 2004; 4(10) pp 1981 – 1985
    [55]Andrew B. Greytak, Carl J. Barrelet, Yat Li, and
    Charles M. Lieber Appl. Phys. Lett. 87, 151103

    下載圖示 校內:2012-07-30公開
    校外:2012-07-30公開
    QR CODE