| 研究生: |
洪嘉亨 Hung, Chia-heng |
|---|---|
| 論文名稱: |
擋板與側壁注入對微型混合器效率之影響的暫態觀察 The transient observation of the effects of baffles and sidewall injection on the efficiency of mixers |
| 指導教授: |
吳志陽
Wu, Chih-yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 擋板 、微型混合器 、暫態 |
| 外文關鍵詞: | transient, mixers, baffles |
| 相關次數: | 點閱:110 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文考慮不同擋板高度、擋板數與注入位置的側注入混合器,由觀察暫態過程,來探討它們對混合效果之影響。製程中,採用SU-8厚膜光阻以微影製程在矽晶圓上製作微型混合器之母模,再以聚二甲基矽氧烷(polydimethysiloxane,PDMS)翻模製作微型混合器,接合流道上蓋,即完成微型混合器,接上矽膠管,再加上兩個微量式注射幫浦構成完整系統。影像擷取系統為數位攝影機、光學顯微鏡、影像擷取卡與電腦,紀錄流體在流道中流動與混合情況,並以影像軟體擷取出圖片,將呈現其暫態過程。另外,利用熱流數值模擬軟體(CFD-ACE+)模擬計算流場狀態。結果顯示:(一) 當擋板高度愈高,其混合效率愈佳,(二) 混合效果會隨擋板數目增加而較佳,但是改善幅度隨著擋板總數的增加而減少,(三) 擋板數必須達到三擋板才能有較佳混合,(四) 側壁注入必須錯開才會有較佳的混合效果。
In this work, we investigate the effects of baffles and sidewall injection on the efficiency of mixers by studying the transient process. In fabrication, the SU-8 thick film photoresist is used to fabricate the structure of the micromixers on the silicon wafer by photolithogrphy. Casting of polydimethysiloxane(PDMS)is followed to mold the SU-8 pattern. We bond the first patterned PDMS with a cover layer of PDMS. Then, we obtain the experimental micromixer. The fluid flow system consists of the micromixer with pipes and two micro-syringe pumps. An image capture system, including a CCD camera, an optical microscope, an image capture card and a personal computer, is set up. The visualization of the mixing process of the mixing fluids are obtained by the system. Then, we use image software to obtain pictures showed the transient process. Besides, the commercial codes, CFD-ACE+, are applied to simulate the transient mixing. The results show that (i) the baffles are higher, the mixing is better, (ii) the efficiency increases with the number of the baffles, but the improvement of the efficiency decreases as the number of baffles gets large, (iii) to enhance the mixing of fluids, three or more baffles are needed, (iv) the mixing by staggered injections is better than that by in-line injections.
1. A. Manazs, N. Graber and H. M. Widmer, “Miniaturized total analysis system : a novel concept for chemical sensing,” Sensor and Actuator, B1, pp. 244-248, 1990.
2. M. A.Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammatco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science, Vol. 282, pp. 484-487, 1998.
3. J. Branejerg, P. Gravesen, J. P. Krog and C. R. Nielson, “Fast mixing by lamination,” Proceedings of the 9th Annual Workshop on Micro Electro Mechanical systems, IEEE, pp.441-446, 1996.
4. N. Schwesinger, T. Frank and H. Wurmus, “A modular microfluid system with an integrated micromixer,” Journal of Micromechanics and Microengineering, Vol. 6, pp. 99-102, 1996.
5. S. C. Jacobson, T. E. McKnight and J. M. Ramsey, “Microfluidic devices for electrokinetically driven parallel and serial mixing,” Analytical Chemistry, Vol. 71, pp. 4455-4459, 1999.
6. D. Gobby, P. Angeli and A. Gavriilidis, “Mixing characteristic of T-type microfluidic mixers,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 126-132, 2001.
7. T. J. Johnson, D. Ross and L. E. Locascio, “Rapid microfluidic mixing,” Analytical Chemistry, Vol. 74, pp. 45-51, 2002.
8. A. D. Stroock, Dertinger, K. W. Stephan, A. Ajdari, Igor Mezic, H. A. Stone, G. M. Whitesides, “Chaotic mixer for microchannels,” Science, Vol. 295, pp. 647-651, 2002.
9. A. A. Deshmukh, D. Liepmann and A. P. Pisano, “Continuous micromixer with pulsatile micropump,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 4-8, June 2000, 73-6.
10. J. Evans, D. Liepmann and A. P. Pisano, “Planar laminar mixer,” Proceedings of IEEE MENS Symposium, pp. 96-101, 1997.
11. J. H. Tsai and L. Lin, “Active microfluidic mixer and gas bubble filter driven by thermal micropump,” Sensors and Actuators A, Vol. 97-98, pp. 665-671, 2002.
12. V. Vivek, Y. Zeng and E. S. Kim, “Novel acoustic-wave micromixer,” The 13th Annual International Conference on Micro Electro Mechanical Systems, MENS 2000, pp. 668-673, 2000.
13. H. Jagannathan, G. G. Yaralioglu, A. S. Ergun and B. T. Khuri-Yakub, “Micor-fluidic channels with integrated ultrasonic transducers,” Proceedings of the IEEE Ultrasonic Symposium, Vol. 2, pp. 859-862, 2001.
14. B. R. Thomas and S. Ghodbane, “Evaluation of a mixed micellar electroknetic capillary electrophoresis method for validated pharmaceutical quality control,” Journal of Liquid Chromatography, Vol. 16, No. 9-10, pp. 1983-2006, 1993.
15. P. Huang and K. S. Breuer, “Performance and scaling of an electro-osmosis mixer,” The 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Boston, USA, pp. 663-666, 2003.
16. K. Shinohara, Y. Sugii, A. Aota, A. Hibara, M. Tokeshi, T. Kitamori and K. Okamoto, “High-speed micro-PIV measurements of transient flow in microfluidic devices,” Measurement Science and Technology, Vol. 15, pp. 1965-1970, 2004.
17. N. Sundaram and D. K. Tafti, “Evaluation of microchamber geometries and surface conditions for electrokinetic driven mixing,” Analytical Chemistry, Vol. 76, pp. 3785-3793, 2004.
18. N. Glasgow And N. Aubry, “Enhancement of microfluidic mixing using time pulsing,” Journal of Lab on a Chip, Vol. 3, pp. 114-120, 2003.
19. 林文星, “微混合器之暫態流場計算與分析,” 國立成功大學機械工程研究所碩士論文, 2004.
20. S. Lee, H. Y. Lee, I. F. Lee and C. Y. Tseng, “Ink diffusion in water,” European Journal of Physics, Vol. 25, pp. 331-336, 2004.
21. L. H. Lu, K. S. Ryu and C. Liu, “A magnetic microstirrer and array for microfluidic mixing,” Journal of Microelectromechanical Systems, Vol. 11, No. 5, pp. 462-469, 2002.
22. G. A. C. M. Spierings, J. Haisma, F. J. H. M. and Kruis, “Direct bonding of organic polymeric materials,” Philips Journal of Research, Vol. 49, pp. 139-149, 1995.
23. B. Bilenberg, T. Nielsen, B. Clausen and A. Kirstensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” Journal of Micromechanics and Microengineering, Vol. 14, pp. 814-818, 2004.
24. J. Wei, H. Xei, M. L. Nai, C. K. Wong and L. C. Lee, “Low temperature wafer anodic bonding,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 217-222, 2003.
25. 吳青峰, “渦流與注入流體位置對微型混合器效率之影響,” 國立成功大學機械工程研究所碩士論文, 2004.