| 研究生: |
鄭人駿 Cheng, Jen-Chun |
|---|---|
| 論文名稱: |
PVK 緩衝層在n-ZnO/p-CuSCN 薄膜異質接面光檢測特性的影響之研究 Study of PVK buffer layer effects on the performance of n-ZnO/p-CuSCN thin film heterojunction photodetectors |
| 指導教授: |
彭洞清
Perng, Dung-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 氧化鋅 、PVK 、硫氰酸亞銅 、紫外光 、光檢測器 |
| 外文關鍵詞: | ZnO, PVK, CuSCN, ultraviolet, photodetector |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討PVK 緩衝層對於氧化鋅/硫氰酸亞銅異質接面光檢
測表現之研究。製程主要採用低成本的方式,將硫氰酸亞銅薄膜電鍍在
ITO 玻璃基板上,接著在硫氰酸亞銅薄膜上旋轉塗佈PVK薄膜,使用不
鏽鋼金屬遮罩定義預鍍製氧化鋅晶種層之區域後,再利用化學水浴法合
成氧化鋅奈米柱陣列,最後濺鍍ITO 電極。本實驗透過X 光繞射儀
(XRD)、掃描式電子顯微鏡(SEM)、紫外光/可見光光譜儀,對製備的
薄膜進行晶體結構、表面形貌、薄膜界面進行分析。
接著,進一步量測及分析PVK 緩衝層對氧化鋅/硫氰酸亞銅異質接面二極體光電特性之影響。在紫外光波段照射下,氧化鋅/PVK/硫氰酸亞銅二極體和氧化鋅/硫氰酸亞銅光二極體在 -1 V偏壓下,光暗電流比分別為224.69 和4.96,紫外光-可見光拒斥比分別為140.98 和3.88,較
好之光電特性主要歸功於PVK緩衝層可明顯改善界面缺陷,導致較低的
漏電流。
This thesis investigates the effects of a poly-(N-vinylcarbazole)(PVK) intermediate layer
on the performance of n-ZnO nanorods/p-CuSCN heterojunction photodiodes. p-CuSCN
thin- film was electrodeposited on a low-cost fabrication indium tin oxide (ITO) glass
substrate. Subsequently, an organic PVK layer was spin-coated onto the CuSCN film
followed by ZnO nanorods synthesis on a patterned ZnO seed layer using a chemical bath
deposition (CBD) method. This thesis analyzes the crystalline phase, surface
morphologies, and energy band gap of the films through an x-ray diffractometer, a
scanning electron microscope, and a UV-VIS-NIR spectrophotometer, respectively.
The effects of PVK buffer layer on the performance of n-ZnO/p-CuSCN thin film
heterojunction photodetectors are investigated. Under UV light illumination, the
photo/dark current ratios of the n-ZnO/PVK/p-CuSCN and n-ZnO/p-CuSCN photodiodes
under -1 V bias are 224.62 and 4.96, while those of the UV-visible rejection ratios are
140.98 and 3.86, respectively. According aforementioned results, a PVK buffer layer can
minimize the influence of the interface defects between ZnO and CuSCN layers, and
therefore reduce its leakage current.
[1] M. Sasaki, S. Takeshita, M. Sugiura, N. Sudo, Y. Miyake, Y. Furusawa, and T.
Sakata, “Ground-Based Observation of Biologically Active Solar Ultraviolet-B
Irradiance at 35°N Latitude in Japan,” Journal of Geomagnetism and Geoelectricity,
vol. 45, no. 6, pp. 473-485, 1993.
[2] F. Omnès, E. Monroy, E. Muñoz, and J. L. Reverchon, “Wide bandgap UV
photodetectors: A short review of devices and applications,” InIntegrated
Optoelectronic Devices 2007, International Society for Optics and Photonics, vol.
6473, pp. 64730E-1-64730E-15, 2007.
[3] D. Y. Kim, J. Ryu, J. Manders,J. Lee, and F. So, “Air-stable, solution-processed
oxide p–n heterojunction ultraviolet photodetector,” ACS Applied Materials &
Interfaces, vol. 6, no. 3, pp. 1370-1374, 2014.
[4] P. Sandvik, K. Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung, and M.
Razeghi, “AlxGa1-xN for solar-blind UV detectors,” Journal of Crystal Growth, vol.
231, no. 3, pp. 366-370, 2001.
[5] O. Lupan, L. Chow, G. Chai, L. Chernyak, O. Lopatiuk-Tirpak, and H. Heinrich,
“Focused- ion-beam fabrication of ZnO nanorod-based UV photodetector using the
in-situ lift-out technique,” Physica Status Solidi (a), vol. 205, no. 11, pp. 2673-2678,
2008.
[6] M. Liao, Y. Koide, and J. Alvarez, “Thermally stable visible-blind diamond
photodiode using tungsten carbide Schottky contact,” Applied Physics Letters, vol.
87, no. 2, pp. 2105-2107, 2005.
[7] L. Ö stlund, Q. Wang, R. Esteve, S. Almqvist, D. Rihtnesberg, S. Reshanov, and W.
Kaplan, “4H- and 6H-SiC UV photodetectors,” Physica Status Solidi (c), vol. 9, no.
7, pp. 1680-1682, 2012.
[8] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, and M. Razeghi,
“High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors
based on GaN,” Applied Physics Letters, vol. 74, no. 5, pp. 762-764, 1999.
[9] F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite
ultraviolet photodetector based on interfacial trap-controlled charge injection,”
Nature Nanotechnology, vol. 7, no. 12, pp. 798-802, 2012.
[10] Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku, and J. J. Wu, “Near-ultraviolet
photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature
solution processes,” Applied Physics Letters, vol. 92, no. 23, pp. 233301-233301,
2008.
[11] S. M. Hatch, J. Briscoe, and S. Dunn, “A Self-Powered ZnO-Nanorod/CuSCN UV
Photodetector Exhibiting Rapid Response,” Advanced Materials, vol. 25, no. 6, pp.
867-871, 2013.
[12] Y. Xie, H. Huang, W. Yang, and Z. Wu, “Low dark current
metal-semiconductor-metal ultraviolet photodetectors based on sol-gel-derived TiO2
films,” Journal of Applied Physics, vol. 109, no. 2, pp. 023114, 2011.
[13] Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared beta-Ga2O3
thin films for ultraviolet photodetectors,” Applied Physics Letters, vol. 90, no. 3, pp.
1912-1914, 2007.
[14] H. Chen, L. Hu, X. Fang, and L. Wu, “General Fabrication of Monolayer SnO2
Nanonets for High-Performance Ultraviolet Photodetectors,” Advanced Functional
Materials, vol. 22, no. 6, pp. 1229-1235, 2012.
[15] B. Pradhan, S. K. Batabyal, and A. J. Pal, “Vertically aligned ZnO nanowire arrays
in Rose Bengal-based dye-sensitized solar cells,” Solar Energy Materials and Solar
Cells, vol. 91, no. 9, pp. 769-773, 2007.
[16] Q. Yang, Y. Liu, C. Pan, J. Chen, X. Wen, and Z. L. Wang, “Largely enhanced
efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet
light-emitting diode by piezo-phototronic effect,” Nano Letters, vol. 13, no. 2, pp.
607-613, 2013.
[17] D. J. Gargas, M. E. Toimil-Molares, and P. Yang, “Imaging single ZnO vertical
nanowire laser cavities using UV- laser scanning confocal microscopy,” Journal of
the American Chemical Society, vol. 131, no. 6, pp. 2125-2127, 2009.
[18] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, and D. Wang,
“ZnO nanowire UV photodetectors with high internal gain,” Nano Letters, vol. 7, no.
4, pp. 1003-1009, 2007.
[19] T. C. Zhang, Y. Guo, Z. X. Mei, C. Z. Gu, and X. L. Du, “Visible-blind ultraviolet
photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si,”
Applied Physics Letters, vol. 94, no.11, pp. 113508, 2009.
[20] D. C. Perng, H. P. Lin, and M. H. Hong, “High-performance ultraviolet detection
and visible-blind photodetector based on Cu2O/ZnO nanorods with
poly-(N-vinylcarbazole) intermediate layer,” Applied Physics Letters, vol. 107, no.
24, pp. 241113, 2015.
[21] E. H. Rhoderick, and R. H. Williams, “Metal-semiconductor contacts,” Oxford:
Clarendon Press, vol. 129, 1988.
[22] S. M. Sze, “Semiconductor Device Physics and Technology, ” pp. 160, 1985.
[23] W. Schottky, R. Stromer, and F. Waible, “Hochfrequenztechnik,” vol. 37, pp.
162-165, 1931.
[24] S. O. Kasap, “Optoelectronics and Photonics Principles and Practices,” Prentice Hall,
2001.
[25] K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal, “Semiconductor Devics Modeling for
VLSI,” 1993.
[26] S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in
metal-semiconductor-metal (MSM) structures,” Solid-State Electronics, vol. 14, no.
12, pp. 1209-1218, 1971.
[27] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, and A. J. Heeger,
“High-detectivity polymer photodetectors with spectral response from 300 nm to
1450 nm,” Science, vol. 325, no. 5948, pp. 1665-1667, 2009.
[28] N. Yaacobi-Gross, N. D. Treat, P. Pattanasattayavong, H. Faber, A. K. Perumal, N.
Stingelin, and T. D. “Anthopoulos, High-Efficiency Organic Photovoltaic Cells
Based on the Solution‐Processable Hole Transporting Interlayer Copper Thiocyanate
(CuSCN) as a Replacement for PEDOT: PSS,” Advanced Energy Materials, vol. 5,
no. 3, 2015.
[29] S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, and C. Huang, “CuSCN-based
inverted planar perovskite solar cell with an average PCE of 15.6 %,” Nano Letters,
vol. 15, no. 6, pp. 3723-3728, 2015.
[30] S. Li, J. Xu, S. Shi, X. Shi, X. Wang, C. Wang, and L. Li, “UV photoresponse
properties of ZnO nanorods arrays deposited with CuSCN by SILAR method,”
Chemical Physics Letters, vol. 620, no. 50-55, 2015.
[31] J. E. Jaffe, T. C. Kaspar, T. C. Droubay, T. Varga, M. E. Bowden, and G. J. Exarhos,
“Electronic and defect structures of CuSCN,” The Journal of Physical Chemistry C,
vol. 114, no. 19, pp. 9111-9117, 2010.
[32] V. P. S. Perera, M. K. I. Senevirathna, P. K. D. D. P. Pitigala, and K. Tennakone,
“Doping CuSCN films for enhancement of conductivity: Application in
dye-sensitized solid-state solar cells,” Solar Energy Materials and Solar Cells, vol.
86, no. 3, pp. 443-450, 2005.
[33] C. Liu, W. Wu, K. Liu, M. Li, G. Hu, and H. Xu, “Orientation growth and electrical
property of CuSCN films associated with the surface states,” CrystEngComm, vol.
14, no. 20, pp. 6750-6754, 2012.
[34] D. Xu, and D. Xue, “Computational study of crystal growth habit and cleavage,”
Journal of Alloys and Compounds, vol. 449, no. 1, pp. 353-356, 2008.
[35] K. Tennakone, A. H. Jayatissa, C. A. N. Fernando, S. Wickramanayake, S.
Punchihewa, L. K. Weerasena, , and W. D. R. Premasiri, “Semiconducting and
Photoelectrochemical Properties of n‐ and p‐ Type β‐CuCNS,” Physica Status
Solidi (a), vol. 103, no. 2, pp. 491-497, 1987.
[36] N. Wijeyasinghe, and T. D. Anthopoulos, “Copper (I) thiocyanate (CuSCN) as a
hole-transport material for large-area opto/electronics,” Semiconductor Science and
Technology, vol. 30, no. 10, pp. 104002, 2015.
[37] J. C. Bernede, H. Derouiche, and V. Djara, “Organic photovoltaic devices: influence
of the cell configuration on its performences,” Solar Energy Materials and Solar
Cells, vol. 87, no. 1, pp. 261-270, 2005.
[38] L. Wang, B. Liang, F. Huang, J. Peng, and Y. Cao, “Utilization of
water/alcohol-soluble polyelectrolyte as an electron injection layer for fabrication of
high-efficiency multilayer saturated red-phosphorescence polymer light-emitting
diodes by solution processing,” Applied Physics Letters, vol. 89, no. 15, pp. 1115,
2006.
[39] W. Yu, Z. Xu, F. Teng, S. Yang, Y. Hou, L. Qian, and X. Xu, “Blue
electroluminescence of ZnSe thin film in an organic–inorganic heterostructures
device,” Physics Letters A, vol. 338, no. 3, pp. 402-406, 2005.
[40] Y. S. Lai, C. H. Tu, D. L. Kwong, and J. S. Chen, “Charge-transport characteristics
in bistable resistive poly(N-vinylcarbazole) films,” IEEE Electron Device Letters,
vol. 27, no.6, pp. 451-453, 2006.
[41] S. B. Dkhil, J. Davenas, R. Bourguiga, and D. Cornu, “Effect of thermal treatments
on the properties of PVK/silicon nanowires films for hybrid solar cells,” Synthetic
Metals, vol. 161, no. 17, pp. 1928-1933, 2011.
[42] J. Gao, H. You, Z. P. Qin, J. Fang, D. Ma, X. Zhu, and W. Huang, “High efficiency
polymer electrophosphorescent light-emitting diodes,” Semiconductor Science and
Technology, vol. 20, no. 8, pp. 805, 2005.
[43] W. Wu, J. Li, L. Liu, L. Yanga, Z. X. Guo, L. Dai, and D. Zhu, “The
photoconductivity of PVK-carbon nanotube blends,” Chemical Physics Letters, vol.
364, no. 1, pp. 196-199, 2002.
[44] X. Zhao, P. Wang, and B. Li, “CuO/ZnO core/shell heterostructure nanowire arrays:
synthesis, optical property, and energy application,” Chemical Communications, vol.
46, no. 36, pp. 6768-6770, 2010.
[45] H. J. Bolink, E. Coronado, D. Repetto, and M. Sessolo, “Air stable hybrid
organic-inorganic light emitting diodes using ZnO as the cathode,” Applied Physics
Letters, vol. 91, no. 22, pp. 223501, 2007.
[46] C. Fan, Q. Wang, L. Li, S. Zhang, Y. Zhu, X. Zhang, and W. Wang, “Bulk moduli of
wurtzite, zinc-blende, and rocksalt phases of ZnO from chemical bond method and
density functional theory,” Applied Physics Letters, vol. 92, no. 10, pp. 101917,
2008.
[47] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, and T. Sakurai, “Thin
film deposition of Cu2O and application for solar cells,” Solar Energy, vol. 80, no. 6,
pp. 715-722, 2006.
[48] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in
processing and properties of ZnO,” Progress in Materials Science, vol. 50, no. 3, pp.
293-340, 2005.
[49] B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films
deposited on silicon substrates,” Applied Physics Letters, vol. 79, no. 7, pp. 943-945,
2001.
[50] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, and H.
Ohno, “Repeated temperature modulation epitaxy for p-type doping and
light-emitting diode based on ZnO,” Nature Materials, vol. 4, no. 1, pp.42-46, 2005.
[51] B. Cao, and W. Cai, “From ZnO nanorods to nanoplates: chemical bath deposition
growth and surface-related emissions,” The Journal of Physical Chemistry C,
vol.112, no.3, pp. 680-685, 2008.
[52] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, and D. Wang,
“ZnO nanowire UV photodetectors with high internal gain,” Nano Letters, vol. 7, no.
4, pp. 1003-1009, 2007.
[53] 尤光先,電鍍工程學,徐氏基金會出版,1976 年。
[54] 賴耿陽,食用電鍍技術全集,復漢出版社,1981 年。
[55] 蕭宏,半導體製程技術導論,台灣培生教育出版公司,2007 年。
[56] 陳力俊等編著,材料電子顯微鏡學,儀科中心出版,1994 年。
[57] 許樹恩、吳泰伯,X 光繞射原理與材料結構分析,民全書局,1992 年。
[58] 何生龍,彩色電鍍技術,化學工業出版社,2008 年
[59] Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, and D. Yu, “Controllable growth of
well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition
method,” Applied Surface Science, vol. 256, no. 6, pp. 1698-1702, 2010.
[60] P. D’Angelo, M. Barra, A. Cassinese, M. G. Maglione, P. Vacca, C. Minarini, and A.
Rubino, “Electrical transport properties characterization of PVK (poly
N-vinylcarbazole) for electroluminescent devices applications,” Solid-State
Electronics, vol. 51, no. 1, pp. 123-129, 2007.
[61] A. A. Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E. Crossan, and F. Placido, “The
influence of rf power and oxygen flow rate during deposition on the optical
transmittance of copper oxide thin films prepared by reactive magnetron sputtering,”
Journal of Physics D: Applied Physics, vol. 38, no. 2, pp. 266, 2005.
[62] D. K. Zhang, Y. C. Liu, Y. L Liu, and H. Yang, “The electrical properties and the
interfaces of Cu2O/ZnO/ITO p–i–n heterojunction,” Physica B: Condensed Matter,
vol. 351, no. 1, pp. 178-183, 2004.
[63] J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, and Z. L Wang, “Gigantic
enhancement in response and reset time of ZnO UV nanosensor by utilizing
Schottky contact and surface functionalization,” Applied Physics Letters, vol. 94, no.
19, pp. 191103, 2009.
[64] G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire Schottky
barrier ultraviolet photodetector with high sensitivity and fast recovery speed,”
Applied Physics Letters, vol. 99, no. 20, pp. 203105, 2011.
[65] J. L. Pau, J. Waters, E. Rivera, S. M. Kim, and P. Kung, “Low leakage current ZnO
nanowire Schottky photodiodes built by dielectrophoretic contact,” IEEE Electron
Device Letters, vol. 36, no. 8, pp. 814-816, 2015.
校內:2021-07-14公開