簡易檢索 / 詳目顯示

研究生: 鄭人駿
Cheng, Jen-Chun
論文名稱: PVK 緩衝層在n-ZnO/p-CuSCN 薄膜異質接面光檢測特性的影響之研究
Study of PVK buffer layer effects on the performance of n-ZnO/p-CuSCN thin film heterojunction photodetectors
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 氧化鋅PVK硫氰酸亞銅紫外光光檢測器
外文關鍵詞: ZnO, PVK, CuSCN, ultraviolet, photodetector
相關次數: 點閱:74下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討PVK 緩衝層對於氧化鋅/硫氰酸亞銅異質接面光檢
    測表現之研究。製程主要採用低成本的方式,將硫氰酸亞銅薄膜電鍍在
    ITO 玻璃基板上,接著在硫氰酸亞銅薄膜上旋轉塗佈PVK薄膜,使用不
    鏽鋼金屬遮罩定義預鍍製氧化鋅晶種層之區域後,再利用化學水浴法合
    成氧化鋅奈米柱陣列,最後濺鍍ITO 電極。本實驗透過X 光繞射儀
    (XRD)、掃描式電子顯微鏡(SEM)、紫外光/可見光光譜儀,對製備的
    薄膜進行晶體結構、表面形貌、薄膜界面進行分析。
    接著,進一步量測及分析PVK 緩衝層對氧化鋅/硫氰酸亞銅異質接面二極體光電特性之影響。在紫外光波段照射下,氧化鋅/PVK/硫氰酸亞銅二極體和氧化鋅/硫氰酸亞銅光二極體在 -1 V偏壓下,光暗電流比分別為224.69 和4.96,紫外光-可見光拒斥比分別為140.98 和3.88,較
    好之光電特性主要歸功於PVK緩衝層可明顯改善界面缺陷,導致較低的
    漏電流。

    This thesis investigates the effects of a poly-(N-vinylcarbazole)(PVK) intermediate layer
    on the performance of n-ZnO nanorods/p-CuSCN heterojunction photodiodes. p-CuSCN
    thin- film was electrodeposited on a low-cost fabrication indium tin oxide (ITO) glass
    substrate. Subsequently, an organic PVK layer was spin-coated onto the CuSCN film
    followed by ZnO nanorods synthesis on a patterned ZnO seed layer using a chemical bath
    deposition (CBD) method. This thesis analyzes the crystalline phase, surface
    morphologies, and energy band gap of the films through an x-ray diffractometer, a
    scanning electron microscope, and a UV-VIS-NIR spectrophotometer, respectively.
    The effects of PVK buffer layer on the performance of n-ZnO/p-CuSCN thin film
    heterojunction photodetectors are investigated. Under UV light illumination, the
    photo/dark current ratios of the n-ZnO/PVK/p-CuSCN and n-ZnO/p-CuSCN photodiodes
    under -1 V bias are 224.62 and 4.96, while those of the UV-visible rejection ratios are
    140.98 and 3.86, respectively. According aforementioned results, a PVK buffer layer can
    minimize the influence of the interface defects between ZnO and CuSCN layers, and
    therefore reduce its leakage current.

    摘要 .................................................................................................... I Extended Abstract ...................................................................................... II 誌謝 .................................................................................................... X 目錄 .................................................................................................... XI 表目錄 .................................................................................................. XV 圖目錄 ................................................................................................. XVI 第一章 緒論 ............................................................................................. 1 1.1 前言................................................................................................. 1 1.2 研究動機 ............................................................................................ 2 1.3 論文架構 ............................................................................................ 4 第二章 理論基礎及文獻回顧 ................................................................................. 5 2.1 基本理論概述.......................................................................................... 5 2.1.1 金屬-半導體接面(MS junction)理論 .................................................................... 5 2.1.2 蕭特基接觸(Schottky contact)理論 ................................................................... 6 2.1.3 歐姆接觸(Ohmic cotact)理論 ........................................................................ 10 2.1.4 pn 接面原理 ....................................................................................... 12 2.2 光檢測器介紹......................................................................................... 15 2.2.1 基本操作原理....................................................................................... 15 2.2.2 金屬-半導體-金屬(MSM)光檢測器工作原理 ............................................................... 15 2.2.3 pn 階面光二極體原理 ................................................................................ 17 2.2.4 光電導檢測器........................................................................................ 18 2.2.5 光響應度(Responsivity)與檢測度(Detectivity) ........................................................ 20 2.3 薄膜材料特性 ......................................................................................... 21 2.3.1 硫氰酸亞銅(CuSCN)基本結構與物理特性................................................................... 21 2.3.2 Poly(N-vinylcarbazole)(PVK)薄膜的材料特性........................................................... 23 2.3.3 氧化鋅(ZnO)基本結構與物理特性 ....................................................................... 24 第三章 實驗方法........................................................................................... 27 3.1 實驗材料 ............................................................................................ 27 3.2 實驗儀器設備.......................................................................................... 29 3.2.1 恆電位電流儀........................................................................................ 29 3.2.1.1 電鍍基本裝置及電鍍系統 ............................................................................ 30 3.2.1.2 電鍍基本原理...................................................................................... 32 3.2.1.3 循環伏安法(Cyclic voltammetry) ................................................................... 33 3.2.1.4 定電位電解法(Chronoamperometry) .................................................................. 34 3.2.1.5 定電流電解法(Chronopotentiometry) ................................................................ 35 3.2.1.6 法拉第電解定律(Faraday's Laws of Electrolysis).................................................... 35 3.2.2 真空濺鍍系統........................................................................................ 36 3.2.3 旋轉塗佈機 ......................................................................................... 37 3.2.4 高溫方型爐 ......................................................................................... 38 3.3 分析儀器介紹.......................................................................................... 39 3.3.1 掃描式電子顯微鏡(SEM) ............................................................................... 39 3.3.2 X 光繞射儀(XRD) .................................................................................... 42 3.3.3 紫外光/可見光光譜儀(UV-VIS-NIR Spectrophotometer).................................................... 45 3.3.4 光檢測器量測系統 .................................................................................... 45 3.4 實驗流程 ............................................................................................. 48 3.4.1 氧化銦錫(ITO)玻璃基板清洗 ........................................................................... 49 3.4.2 電鍍硫氰酸亞銅(CuSCN)薄膜 ........................................................................... 50 3.4.3 旋轉塗佈Poly(N-vinylcarbazole)(PVK)緩衝層............................................................ 51 3.4.4 濺鍍氧化鋅(ZnO)晶種層 ............................................................................... 51 3.4.5 氧化鋅(ZnO)奈米柱薄膜製備 ............................................................................ 52 3.4.6 氧化銦錫(ITO)電極製作 .............................................................................. 54 第四章 結果與討論 .......................................................................................... 55 4.1 硫氰酸亞銅(CuSCN)薄膜形貌分析 .......................................................................... 56 4.2 旋轉塗佈PVK緩衝層薄膜形貌分析 ........................................................................... 57 4.3 氧化鋅(ZnO)奈米柱薄膜形貌分析 ........................................................................... 58 4.4 n-ZnO/PVK/p-CuSCN異質接面結構分析....................................................................... 59 4.5 XRD 薄膜分析 .......................................................................................... 60 4.6 UV-VIS 光學特性分析 .................................................................................... 61 4.7 元件之電性量測 ......................................................................................... 63 4.8 響應度(Responsivity)與檢測度(Detectivity)分析 .......................................................... 70 第五章 結論 ................................................................................................ 72 參考文獻................................................................................................... 73

    [1] M. Sasaki, S. Takeshita, M. Sugiura, N. Sudo, Y. Miyake, Y. Furusawa, and T.
    Sakata, “Ground-Based Observation of Biologically Active Solar Ultraviolet-B
    Irradiance at 35°N Latitude in Japan,” Journal of Geomagnetism and Geoelectricity,
    vol. 45, no. 6, pp. 473-485, 1993.
    [2] F. Omnès, E. Monroy, E. Muñoz, and J. L. Reverchon, “Wide bandgap UV
    photodetectors: A short review of devices and applications,” InIntegrated
    Optoelectronic Devices 2007, International Society for Optics and Photonics, vol.
    6473, pp. 64730E-1-64730E-15, 2007.
    [3] D. Y. Kim, J. Ryu, J. Manders,J. Lee, and F. So, “Air-stable, solution-processed
    oxide p–n heterojunction ultraviolet photodetector,” ACS Applied Materials &
    Interfaces, vol. 6, no. 3, pp. 1370-1374, 2014.
    [4] P. Sandvik, K. Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung, and M.
    Razeghi, “AlxGa1-xN for solar-blind UV detectors,” Journal of Crystal Growth, vol.
    231, no. 3, pp. 366-370, 2001.
    [5] O. Lupan, L. Chow, G. Chai, L. Chernyak, O. Lopatiuk-Tirpak, and H. Heinrich,
    “Focused- ion-beam fabrication of ZnO nanorod-based UV photodetector using the
    in-situ lift-out technique,” Physica Status Solidi (a), vol. 205, no. 11, pp. 2673-2678,
    2008.
    [6] M. Liao, Y. Koide, and J. Alvarez, “Thermally stable visible-blind diamond
    photodiode using tungsten carbide Schottky contact,” Applied Physics Letters, vol.
    87, no. 2, pp. 2105-2107, 2005.
    [7] L. Ö stlund, Q. Wang, R. Esteve, S. Almqvist, D. Rihtnesberg, S. Reshanov, and W.
    Kaplan, “4H- and 6H-SiC UV photodetectors,” Physica Status Solidi (c), vol. 9, no.
    7, pp. 1680-1682, 2012.
    [8] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, and M. Razeghi,
    “High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors
    based on GaN,” Applied Physics Letters, vol. 74, no. 5, pp. 762-764, 1999.
    [9] F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite
    ultraviolet photodetector based on interfacial trap-controlled charge injection,”
    Nature Nanotechnology, vol. 7, no. 12, pp. 798-802, 2012.
    [10] Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku, and J. J. Wu, “Near-ultraviolet
    photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature
    solution processes,” Applied Physics Letters, vol. 92, no. 23, pp. 233301-233301,
    2008.
    [11] S. M. Hatch, J. Briscoe, and S. Dunn, “A Self-Powered ZnO-Nanorod/CuSCN UV
    Photodetector Exhibiting Rapid Response,” Advanced Materials, vol. 25, no. 6, pp.
    867-871, 2013.
    [12] Y. Xie, H. Huang, W. Yang, and Z. Wu, “Low dark current
    metal-semiconductor-metal ultraviolet photodetectors based on sol-gel-derived TiO2
    films,” Journal of Applied Physics, vol. 109, no. 2, pp. 023114, 2011.
    [13] Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared beta-Ga2O3
    thin films for ultraviolet photodetectors,” Applied Physics Letters, vol. 90, no. 3, pp.
    1912-1914, 2007.
    [14] H. Chen, L. Hu, X. Fang, and L. Wu, “General Fabrication of Monolayer SnO2
    Nanonets for High-Performance Ultraviolet Photodetectors,” Advanced Functional
    Materials, vol. 22, no. 6, pp. 1229-1235, 2012.
    [15] B. Pradhan, S. K. Batabyal, and A. J. Pal, “Vertically aligned ZnO nanowire arrays
    in Rose Bengal-based dye-sensitized solar cells,” Solar Energy Materials and Solar
    Cells, vol. 91, no. 9, pp. 769-773, 2007.
    [16] Q. Yang, Y. Liu, C. Pan, J. Chen, X. Wen, and Z. L. Wang, “Largely enhanced
    efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet
    light-emitting diode by piezo-phototronic effect,” Nano Letters, vol. 13, no. 2, pp.
    607-613, 2013.
    [17] D. J. Gargas, M. E. Toimil-Molares, and P. Yang, “Imaging single ZnO vertical
    nanowire laser cavities using UV- laser scanning confocal microscopy,” Journal of
    the American Chemical Society, vol. 131, no. 6, pp. 2125-2127, 2009.
    [18] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, and D. Wang,
    “ZnO nanowire UV photodetectors with high internal gain,” Nano Letters, vol. 7, no.
    4, pp. 1003-1009, 2007.
    [19] T. C. Zhang, Y. Guo, Z. X. Mei, C. Z. Gu, and X. L. Du, “Visible-blind ultraviolet
    photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si,”
    Applied Physics Letters, vol. 94, no.11, pp. 113508, 2009.
    [20] D. C. Perng, H. P. Lin, and M. H. Hong, “High-performance ultraviolet detection
    and visible-blind photodetector based on Cu2O/ZnO nanorods with
    poly-(N-vinylcarbazole) intermediate layer,” Applied Physics Letters, vol. 107, no.
    24, pp. 241113, 2015.
    [21] E. H. Rhoderick, and R. H. Williams, “Metal-semiconductor contacts,” Oxford:
    Clarendon Press, vol. 129, 1988.
    [22] S. M. Sze, “Semiconductor Device Physics and Technology, ” pp. 160, 1985.
    [23] W. Schottky, R. Stromer, and F. Waible, “Hochfrequenztechnik,” vol. 37, pp.
    162-165, 1931.
    [24] S. O. Kasap, “Optoelectronics and Photonics Principles and Practices,” Prentice Hall,
    2001.
    [25] K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal, “Semiconductor Devics Modeling for
    VLSI,” 1993.
    [26] S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in
    metal-semiconductor-metal (MSM) structures,” Solid-State Electronics, vol. 14, no.
    12, pp. 1209-1218, 1971.
    [27] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, and A. J. Heeger,
    “High-detectivity polymer photodetectors with spectral response from 300 nm to
    1450 nm,” Science, vol. 325, no. 5948, pp. 1665-1667, 2009.
    [28] N. Yaacobi-Gross, N. D. Treat, P. Pattanasattayavong, H. Faber, A. K. Perumal, N.
    Stingelin, and T. D. “Anthopoulos, High-Efficiency Organic Photovoltaic Cells
    Based on the Solution‐Processable Hole Transporting Interlayer Copper Thiocyanate
    (CuSCN) as a Replacement for PEDOT: PSS,” Advanced Energy Materials, vol. 5,
    no. 3, 2015.
    [29] S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, and C. Huang, “CuSCN-based
    inverted planar perovskite solar cell with an average PCE of 15.6 %,” Nano Letters,
    vol. 15, no. 6, pp. 3723-3728, 2015.
    [30] S. Li, J. Xu, S. Shi, X. Shi, X. Wang, C. Wang, and L. Li, “UV photoresponse
    properties of ZnO nanorods arrays deposited with CuSCN by SILAR method,”
    Chemical Physics Letters, vol. 620, no. 50-55, 2015.
    [31] J. E. Jaffe, T. C. Kaspar, T. C. Droubay, T. Varga, M. E. Bowden, and G. J. Exarhos,
    “Electronic and defect structures of CuSCN,” The Journal of Physical Chemistry C,
    vol. 114, no. 19, pp. 9111-9117, 2010.
    [32] V. P. S. Perera, M. K. I. Senevirathna, P. K. D. D. P. Pitigala, and K. Tennakone,
    “Doping CuSCN films for enhancement of conductivity: Application in
    dye-sensitized solid-state solar cells,” Solar Energy Materials and Solar Cells, vol.
    86, no. 3, pp. 443-450, 2005.
    [33] C. Liu, W. Wu, K. Liu, M. Li, G. Hu, and H. Xu, “Orientation growth and electrical
    property of CuSCN films associated with the surface states,” CrystEngComm, vol.
    14, no. 20, pp. 6750-6754, 2012.
    [34] D. Xu, and D. Xue, “Computational study of crystal growth habit and cleavage,”
    Journal of Alloys and Compounds, vol. 449, no. 1, pp. 353-356, 2008.
    [35] K. Tennakone, A. H. Jayatissa, C. A. N. Fernando, S. Wickramanayake, S.
    Punchihewa, L. K. Weerasena, , and W. D. R. Premasiri, “Semiconducting and
    Photoelectrochemical Properties of n‐ and p‐ Type β‐CuCNS,” Physica Status
    Solidi (a), vol. 103, no. 2, pp. 491-497, 1987.
    [36] N. Wijeyasinghe, and T. D. Anthopoulos, “Copper (I) thiocyanate (CuSCN) as a
    hole-transport material for large-area opto/electronics,” Semiconductor Science and
    Technology, vol. 30, no. 10, pp. 104002, 2015.
    [37] J. C. Bernede, H. Derouiche, and V. Djara, “Organic photovoltaic devices: influence
    of the cell configuration on its performences,” Solar Energy Materials and Solar
    Cells, vol. 87, no. 1, pp. 261-270, 2005.
    [38] L. Wang, B. Liang, F. Huang, J. Peng, and Y. Cao, “Utilization of
    water/alcohol-soluble polyelectrolyte as an electron injection layer for fabrication of
    high-efficiency multilayer saturated red-phosphorescence polymer light-emitting
    diodes by solution processing,” Applied Physics Letters, vol. 89, no. 15, pp. 1115,
    2006.
    [39] W. Yu, Z. Xu, F. Teng, S. Yang, Y. Hou, L. Qian, and X. Xu, “Blue
    electroluminescence of ZnSe thin film in an organic–inorganic heterostructures
    device,” Physics Letters A, vol. 338, no. 3, pp. 402-406, 2005.
    [40] Y. S. Lai, C. H. Tu, D. L. Kwong, and J. S. Chen, “Charge-transport characteristics
    in bistable resistive poly(N-vinylcarbazole) films,” IEEE Electron Device Letters,
    vol. 27, no.6, pp. 451-453, 2006.
    [41] S. B. Dkhil, J. Davenas, R. Bourguiga, and D. Cornu, “Effect of thermal treatments
    on the properties of PVK/silicon nanowires films for hybrid solar cells,” Synthetic
    Metals, vol. 161, no. 17, pp. 1928-1933, 2011.
    [42] J. Gao, H. You, Z. P. Qin, J. Fang, D. Ma, X. Zhu, and W. Huang, “High efficiency
    polymer electrophosphorescent light-emitting diodes,” Semiconductor Science and
    Technology, vol. 20, no. 8, pp. 805, 2005.
    [43] W. Wu, J. Li, L. Liu, L. Yanga, Z. X. Guo, L. Dai, and D. Zhu, “The
    photoconductivity of PVK-carbon nanotube blends,” Chemical Physics Letters, vol.
    364, no. 1, pp. 196-199, 2002.
    [44] X. Zhao, P. Wang, and B. Li, “CuO/ZnO core/shell heterostructure nanowire arrays:
    synthesis, optical property, and energy application,” Chemical Communications, vol.
    46, no. 36, pp. 6768-6770, 2010.
    [45] H. J. Bolink, E. Coronado, D. Repetto, and M. Sessolo, “Air stable hybrid
    organic-inorganic light emitting diodes using ZnO as the cathode,” Applied Physics
    Letters, vol. 91, no. 22, pp. 223501, 2007.
    [46] C. Fan, Q. Wang, L. Li, S. Zhang, Y. Zhu, X. Zhang, and W. Wang, “Bulk moduli of
    wurtzite, zinc-blende, and rocksalt phases of ZnO from chemical bond method and
    density functional theory,” Applied Physics Letters, vol. 92, no. 10, pp. 101917,
    2008.
    [47] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, and T. Sakurai, “Thin
    film deposition of Cu2O and application for solar cells,” Solar Energy, vol. 80, no. 6,
    pp. 715-722, 2006.
    [48] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in
    processing and properties of ZnO,” Progress in Materials Science, vol. 50, no. 3, pp.
    293-340, 2005.
    [49] B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films
    deposited on silicon substrates,” Applied Physics Letters, vol. 79, no. 7, pp. 943-945,
    2001.
    [50] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, and H.
    Ohno, “Repeated temperature modulation epitaxy for p-type doping and
    light-emitting diode based on ZnO,” Nature Materials, vol. 4, no. 1, pp.42-46, 2005.
    [51] B. Cao, and W. Cai, “From ZnO nanorods to nanoplates: chemical bath deposition
    growth and surface-related emissions,” The Journal of Physical Chemistry C,
    vol.112, no.3, pp. 680-685, 2008.
    [52] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, and D. Wang,
    “ZnO nanowire UV photodetectors with high internal gain,” Nano Letters, vol. 7, no.
    4, pp. 1003-1009, 2007.
    [53] 尤光先,電鍍工程學,徐氏基金會出版,1976 年。
    [54] 賴耿陽,食用電鍍技術全集,復漢出版社,1981 年。
    [55] 蕭宏,半導體製程技術導論,台灣培生教育出版公司,2007 年。
    [56] 陳力俊等編著,材料電子顯微鏡學,儀科中心出版,1994 年。
    [57] 許樹恩、吳泰伯,X 光繞射原理與材料結構分析,民全書局,1992 年。
    [58] 何生龍,彩色電鍍技術,化學工業出版社,2008 年
    [59] Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, and D. Yu, “Controllable growth of
    well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition
    method,” Applied Surface Science, vol. 256, no. 6, pp. 1698-1702, 2010.
    [60] P. D’Angelo, M. Barra, A. Cassinese, M. G. Maglione, P. Vacca, C. Minarini, and A.
    Rubino, “Electrical transport properties characterization of PVK (poly
    N-vinylcarbazole) for electroluminescent devices applications,” Solid-State
    Electronics, vol. 51, no. 1, pp. 123-129, 2007.
    [61] A. A. Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E. Crossan, and F. Placido, “The
    influence of rf power and oxygen flow rate during deposition on the optical
    transmittance of copper oxide thin films prepared by reactive magnetron sputtering,”
    Journal of Physics D: Applied Physics, vol. 38, no. 2, pp. 266, 2005.
    [62] D. K. Zhang, Y. C. Liu, Y. L Liu, and H. Yang, “The electrical properties and the
    interfaces of Cu2O/ZnO/ITO p–i–n heterojunction,” Physica B: Condensed Matter,
    vol. 351, no. 1, pp. 178-183, 2004.
    [63] J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, and Z. L Wang, “Gigantic
    enhancement in response and reset time of ZnO UV nanosensor by utilizing
    Schottky contact and surface functionalization,” Applied Physics Letters, vol. 94, no.
    19, pp. 191103, 2009.
    [64] G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire Schottky
    barrier ultraviolet photodetector with high sensitivity and fast recovery speed,”
    Applied Physics Letters, vol. 99, no. 20, pp. 203105, 2011.
    [65] J. L. Pau, J. Waters, E. Rivera, S. M. Kim, and P. Kung, “Low leakage current ZnO
    nanowire Schottky photodiodes built by dielectrophoretic contact,” IEEE Electron
    Device Letters, vol. 36, no. 8, pp. 814-816, 2015.

    無法下載圖示 校內:2021-07-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE