| 研究生: |
施孟岑 Shih, Meng-Cen |
|---|---|
| 論文名稱: |
探討流感病毒感染時的先天免疫調控機制 Study of innate immune regulation during influenza A virus infection |
| 指導教授: |
凌斌
Ling, Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 流行性感冒病毒A型 、非結構蛋白1 、RIG-I 、TRAF3 、第一型干擾素 |
| 外文關鍵詞: | influenza A virus (IAV), non-structural protein 1 (NS1), RIG-I, TRAF3, type I interferons |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流行性感冒病毒A型(IAV)每年會感染數百萬人引起呼吸道疾病。流行性感冒病毒A型感染時,病毒RNA 的感應器,包括TLR3、TLR7與RIG-I,都已經被證實可以偵測病毒的RNA 進而活化第一型干擾素相關的抗病毒防禦。同時,IAV也會發展出許多的策略對抗第一型干擾素的表現,使病毒在宿主細胞中成功複製。病毒的非結構蛋白1 (NS1) 已經被證實會透過競爭RIG-I與病毒的RNA結合,阻礙RIG-I下游的第一型干擾素活化。我們實驗室先前的研究發現病毒的NS1會透過RNA結合非依賴性機制拮抗RIG-I下游的E3泛素連接酶TRAF3,阻礙下游的第一型干擾素活化。因此,我研究的具體目標1,主要更進一部探討流行性感冒病毒A型病毒的非結構蛋白1在RIG-I訊號傳遞過程中,究竟是如何拮抗TRAF3並損害它的泛素化及活化。透過序列比對分析的方式,在非結構蛋白1 C端的effector domain有一個重要的TRAF3-結合序列(TRAF3-binding motif, TIM)。在這個重要的TIM產生一個非結構蛋白1的突變體,以測試它拮抗TRAF3的影響。我們的結果顯示非結構蛋白1-TIM突變體顯著性地消除它與TRAF3的相互作用,並因此降低它阻礙RIG-I 訊號傳遞產生第一型干擾素的能力。此外,帶有非結構蛋白1-TIM突變體的重組流行性感冒病毒A型在阻礙第一型干擾素活化是有缺陷的並且在小鼠伴隨著致病性的降低。我們的研究結果顯示新穎的TIM在非結構蛋白1負責拮抗TRAF3,引起抑制RIG-I 訊號傳遞產生第一型干擾素。我們發表的研究顯示,TAPE (TBK1-associated protein in endolysosomes)是一個轉接子涉及在調控TLR-3, TLR-4和RIG-I訊號傳遞路徑產生第一型干擾素。我們的實驗室有興趣的進一步探討TAPE在抗病毒先天免疫中的體內角色。因此,我的目標2,我主要探討TAPE在防禦對抗流行性感冒病毒A型感染的功能性角色。ELISA結果顯示,在流行性感冒病毒A型感染的期間,與對照組傳統的樹突狀細胞(cDCs)相比,TAPE缺乏的cDCs會損害第一型干擾素的產生。我們先前的研究顯示,就體重減輕和存活率方面,TAPE 條件性剔除小鼠對於流行性感冒病毒A型感染更敏感。我的論文更進一步證實,流行性感冒病毒A型病毒量在TAPE 條件性剔除小鼠的肺比起對照組小鼠的肺來的更高。總之,結果不僅證實TAPE在cDCs對於流行性感冒病毒A型感染的期間產生第一型干擾素是重要的,而且也是保護體內對抗流行性感冒病毒A型感染重要的調控因子。
Influenza A virus (IAV) infects millions of people to cause respiratory diseases every year. Viral RNA sensors including TLR3, TLR7 and RIG-I are shown to detect IAV RNA species to trigger type I interferons (IFNs)-mediated antiviral defenses. Meanwhile, IAV develops strategies to antagonize type I IFN expression for its successful replication in host cells. The IAV non-structural protein 1 (NS1) is shown to counteract RIG-I signaling to type I IFN induction through competing with RIG-I for viral RNA binding. Previous work from the lab revealed a viral RNA binding-independent mechanism for NS1 to counteract RIG-I signaling to type I IFN induction through targeting an E3 ubiquitin ligase TRAF3. Thus, the specific aim 1 in my current study is to further clarify the mechanism of how IAV NS1 targets TRAF3 to impair its ubiquitination and activation during RIG-I signaling. Through the sequence analysis, a potential TRAF3-binding motif (TIM) was found in the C-terminal effector domain of NS1. A NS1 mutant in this potential TIM was generated to test its effect on targeting TRAF3. Our results showed that the NS1-TIM mutant abolished its interaction with TRAF3 significantly, and consequently reduced its ability to block RIG-I signaling to type I IFN induction. Furthermore, a recombinant IAV harboring a NS1-TIM mutant was defective in blocking type I IFN induction and concomitantly reduced pathogenicity in mice. Our findings reveal a novel TIM in NS1 responsible for targeting TRAF3, leading to the suppression of RIG-I signaling to IFN-β production. Our published studies have shown that TBK1-associated protein in endolysosomes (TAPE) is an adaptor implicated in regulating the TLR-3, TLR-4, and RIG-I like receptors pathways to type I IFN activation. Our lab has an interest to further explore in vivo role of TAPE in antiviral innate immunity. Thus, in my aim 2, I focus on studying the functional role of TAPE in defending against IAV infection. Results from ELISA showed that TAPE-deficient cDCs compared to control cDCs were impaired in IFN-β cytokines production upon IAV infection. Our previous study revealed that TAPE condition knockout (cKO) mice are more susceptible to IAV infection in terms of the body weight loss and survival rate. My thesis further demonstrated that IAV titers in lungs of TAPE condition knockout (cKO) mice were much higher than those of Tapef/f littermates in vivo. Together, the results not only demonstrate that TAPE is essential for triggering type I IFN production in primary cDCs in response to IAV infection but also is an important regulator to protect against IAV infection in vivo.
REFERENCES
1. World Health Organization. Influenza-Biologicals. World Health Organization. [online] http://www.who.int/biologicals/vaccines/influenza/en/.
2. F. Krammer, P. Palese, Advances in the development of influenza virus vaccines. Nat Rev Drug Discov 14, 167-182 (2015).
3. A. Iwasaki, P. S. Pillai, Innate immunity to influenza virus infection. Nat. Rev. Immunol. 14, 315-328 (2014).
4. C. Paules, K. Subbarao, Influenza. The Lancet 390, 697-708 (2017).
5. A. V. Vasin et al., Molecular mechanisms enhancing the proteome of influenza A
viruses: An overview of recently discovered proteins. Virus Res. 185, 53-63 (2014).
6. S. Crotta et al., Type I and type III interferons drive redundant amplification loops
to induce a transcriptional signature in influenza-infected airway epithelia. PLoS
Pathog. 9, e1003773 (2013).
7. Y. Sun, J. Jiang, P. Tien, W. Liu, J. Li, IFN-lambda: A new spotlight in innate
immunity against influenza virus infection. Protein & cell 9, 832-837 (2018).
8. I. K. Pang, A. Iwasaki, Inflammasomes as mediators of immunity against influenza
virus. Trends Immunol. 32, 34-41 (2011).
9. V. T. Ioanna E. Galani, Evridiki-Evangelia Eleminiadou, Sergei V. Kotenko,
Kalliopi Thanopoulou, Evangelos Andreakos, Interferon-l mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness. Immunity 46, 875–890 (2017).
10. D. Goubau, S. Deddouche, C. Reis e Sousa, Cytosolic sensing of viruses. Immunity 38, 855-869 (2013).
11. P. S. Pillai et al., Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science 352, 463-466 (2016).
12. O. Haller, P. Staeheli, G. Kochs, Protective role of interferon-induced Mx GTPases against influenza viruses. Rev. Sci. Tech. 28, 219-231 (2009).
13. A. A. Benitez et al., In Vivo RNAi Screening Identifies MDA5 as a Significant Contributor to the Cellular Defense against Influenza A Virus. Cell Rep 11, 1714-1726 (2015).
14. T. Bergsbaken, S. L. Fink, B. T. Cookson, Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99-109 (2009).
15. T. Kuriakose et al., ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Science Immunology 1, (2016).
16. V. Hornung et al., 5 '-triphosphate RNA is the ligand for RIG-I. Science 314, 18
994-997 (2006).
17. H. Kato et al., Cell type-specific involvement of RIG-I in antiviral response.
Immunity 23, 19-28 (2005).
18. P. Vandenabeele, M. J. Bertrand, The role of the IAP E3 ubiquitin ligases in
regulating pattern-recognition receptor signalling. Nat. Rev. Immunol. 12, 833-844
(2012).
19. S. Koyama et al., Differential role of TLR- and RLR-signaling in the immune
responses to influenza A virus infection and vaccination. J. Immunol. 179,
4711-4720 (2007).
20. S. U. Seo et al., MyD88 signaling is indispensable for primary influenza A virus
infection but dispensable for secondary infection. J. Virol. 84, 12713-12722 (2010).
21. J. Pothlichet et al., Type I IFN triggers RIG-I/TLR3/NLRP3-dependent
inflammasome activation in influenza A virus infected cells. PLoS Pathog. 9,
e1003256 (2013).
22. P. Xie, TRAF molecules in cell signaling and in human diseases. J. Mol. Signal. 8,
7 (2013).
23. H. Hacker, P. H. Tseng, M. Karin, Expanding TRAF function: TRAF3 as a
tri-faced immune regulator. Nat. Rev. Immunol. 11, 457-468 (2011).
24. H. Hacker et al., Specificity in Toll-like receptor signalling through distinct effector
functions of TRAF3 and TRAF6. Nature 439, 204-207 (2006).
25. E. Guven-Maiorov et al., TRAF3 signaling: Competitive binding and evolvability
of adaptive viral molecular mimicry. Biochim. Biophys. Acta 1860, 2646-2655
(2016).
26. S. S. Kim et al., DOK3 is required for IFN-beta production by enabling
TRAF3/TBK1 complex formation and IRF3 activation. J. Immunol. 193, 840-848
(2014).
27. S. K. Saha et al., Regulation of antiviral responses by a direct and specific
interaction between TRAF3 and Cardif. EMBO J. 25, 3257-3263 (2006).
28. S. Paz et al., A functional C-terminal TRAF3-binding site in MAVS participates in
positive and negative regulation of the IFN antiviral response. Cell Res. 21,
895-910 (2011).
29. P. Nakhaei, P. Genin, A. Civas, J. Hiscott, RIG-I-like receptors: sensing and
responding to RNA virus infection. Semin. Immunol. 21, 215-222 (2009).
30. A. P. Mao et al., Virus-triggered Ubiquitination of TRAF3/6 by cIAP1/2 Is Essential for Induction of Interferon-beta (IFN-beta) and Cellular Antiviral
Response. J. Biol. Chem. 285, 9470-9476 (2010).
31. R. D. Molony et al., Aging impairs both primary and secondary RIG-I signaling for
19
interferon induction in human monocytes. Sci Signal 10, (2017).
32. C. Klemm, Y. Boergeling, S. Ludwig, C. Ehrhardt, Immunomodulatory
Nonstructural Proteins of Influenza A Viruses. Trends Microbiol. 26, 624-636
(2018).
33. D. Zamarin, M. B. Ortigoza, P. Palese, Influenza A virus PB1-F2 protein
contributes to viral pathogenesis in mice. J. Virol. 80, 7976-7983 (2006).
34. H. Gao et al., The contribution of PA-X to the virulence of pandemic 2009 H1N1
and highly pathogenic H5N1 avian influenza viruses. Sci. Rep. 5, 8262 (2015).
35. J. Hu et al., PA-X decreases the pathogenicity of highly pathogenic H5N1
influenza A virus in avian species by inhibiting virus replication and host response.
J. Virol. 89, 4126-4142 (2015).
36. J. Ayllon, A. Garcia-Sastre, The NS1 protein: a multitasking virulence factor. Curr.
Top. Microbiol. Immunol. 386, 73-107 (2015).
37. D. L. Noah, K. Y. Twu, R. M. Krug, Cellular antiviral responses against influenza
A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3′ end processing of cellular pre-mRNAS. Virology 307, 386-395 (2003).
38. N. Zhao et al., Influenza virus infection causes global RNAPII termination defects. Nat. Struct. Mol. Biol. 25, 885-893 (2018).
39. K. Tawaratsumida et al., Quantitative proteomic analysis of the influenza A virus nonstructural proteins NS1 and NS2 during natural cell infection identifies PACT as an NS1 target protein and antiviral host factor. J. Virol. 88, 9038-9048 (2014).
40. W. Feng et al., Influenza a virus NS1 protein induced A20 contributes to viral replication by suppressing interferon-induced antiviral response. Biochem. Biophys. Res. Commun. 482, 1107-1113 (2017).
41. A. Pichlmair et al., RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314, 997-1001 (2006).
42. N. R. Donelan, C. F. Basler, A. Garcia-Sastre, A Recombinant Influenza A Virus Expressing an RNA-Binding-Defective NS1 Protein Induces High Levels of Beta Interferon and Is Attenuated in Mice. J. Virol. 77, 13257-13266 (2003).
43. M. U. Gack et al., Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell host & microbe 5, 439-449 (2009).
44. A. Rogaeva, P. R. Albert, The mental retardation gene CC2D1A/Freud-1 encodes a long isoform that binds conserved DNA elements to repress gene transcription. Eur. J. Neurosci. 26, 965-974 (2007).
45. C. H. Chang et al., TBK1-associated protein in endolysosomes (TAPE) is an innate 20
immune regulator modulating the TLR3 and TLR4 signaling pathways. J. Biol.
Chem. 286, 7043-7051 (2011).
46. L. Basel-Vanagaite et al., The CC2D1A, a member of a new gene family with C2
domains, is involved in autosomal recessive non-syndromic mental retardation. J.
Med. Genet. 43, 203-210 (2006).
47. M. A. Lemmon, Membrane recognition by phospholipid-binding domains. Nat. Rev.
Mol. Cell Biol. 9, 99-111 (2008).
48. M. C. Manzini et al., CC2D1A regulates human intellectual and social function as
well as NF-kappaB signaling homeostasis. Cell Rep 8, 647-655 (2014).
49. A. Rogaeva, K. Galaraga, P. R. Albert, The Freud-1/CC2D1A family:
transcriptional regulators implicated in mental retardation. J. Neurosci. Res. 85,
2833-2838 (2007).
50. Y. Usami et al., Regulation of CHMP4/ESCRT-III function in human
immunodeficiency virus type 1 budding by CC2D1A. J. Virol. 86, 3746-3756
(2012).
51. A. Nakamura, M. Naito, T. Tsuruo, N. Fujita, Freud-1/Aki1, a novel
PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Mol. Cell. Biol. 28, 5996-6009 (2008).
52. K. R. Chen et al., TBK1-associated protein in endolysosomes (TAPE)/CC2D1A is a key regulator linking RIG-I-like receptors to antiviral immunity. J. Biol. Chem. 287, 32216-32221 (2012).
53. Chun-YangLin, The interactions between the host innate immune system and influenza A virus. master thesis, National Cheng Kung University, Taiwan (2012).
54. Kuan-JungLin, Molecular mechanisms of how influenza A viral NS1 protein antagonizes the host antiviral immune responses. master thesis, National Cheng Kung University, Taiwan (2014).
55. L. Martinez-Sobrido, A. Garcia-Sastre, Generation of recombinant influenza virus from plasmid DNA. J Vis Exp, (2010).
56. E. Hoffmann, G. Neumann, Y. Kawaoka, G. Hobom, R. G. Webster, A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. U. S. A. 97, 6108-6113 (2000).
57. K. R. Ely, R. Kodandapani, S. Wu, Protein-protein interactions in TRAF3. Adv. Exp. Med. Biol. 597, 114-121 (2007).
58. Y. Huang et al., UXT-V1 facilitates the formation of MAVS antiviral signalosome on mitochondria. J. Immunol. 188, 358-366 (2012).
59. J. M. Hildebrand et al., Roles of tumor necrosis factor receptor associated factor 3 21
(TRAF3) and TRAF5 in immune cell functions. Immunol. Rev. 244, 55-74 (2011).
60. N. Kayagaki et al., DUBA: a deubiquitinase that regulates type I interferon
production. Science 318, 1628-1632 (2007).
61. P. Nakhaei et al., The E3 ubiquitin ligase Triad3A negatively regulates the
RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation. PLoS
Pathog. 5, e1000650 (2009).
62. C. Kuan-Ru, Biochemical and functional study of antiviral innate immunity against
RNA virus infection. PhD thesis, National Cheng Kung University, Taiwan (2016).
63. X. Wang et al., Differential requirement for the IKKbeta/NF-kappaB signaling
module in regulating TLR- versus RLR-induced type 1 IFN expression in dendritic
cells. J. Immunol. 193, 2538-2545 (2014).
64. X. D. Li, L. Sun, R. B. Seth, G. Pineda, Z. J. Chen, Hepatitis C virus protease
NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proceedings of the National Academy of Sciences 102, 17717-17722 (2005).
65. M. Mibayashi et al., Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J. Virol. 81, 514-524 (2007).
66. C. S. Shi et al., SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J. Immunol. 193, 3080-3089 (2014).
67. X. Chen et al., SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein & cell 5, 369-381 (2014).
68. W. Qian et al., The C-Terminal Effector Domain of Non-Structural Protein 1 of Influenza A Virus Blocks IFN-beta Production by Targeting TNF Receptor-Associated Factor 3. Front. Immunol. 8, 779 (2017).
校內:2024-01-30公開