簡易檢索 / 詳目顯示

研究生: 余政賢
Yu, Jheng-Sian
論文名稱: 基於場協同理論分析之熱交換器性能設計與探討
Performance Design of Heat Exchanger Based on Field Synergy Theory
指導教授: 陳介力
Chen, Chieh-li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 78
中文關鍵詞: 板式熱交換器場協同理論最佳化設計柏拉圖前沿
外文關鍵詞: Plate heat exchanger, Field Synergy Theory, Optimization Design, Pareto front
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是利用場協同理論對不同幾何的山型紋板式熱交換器在流場及熱場的數值模擬結果進行探討,並且進行最佳化設計。以往場協同理論應用於熱交換器上僅探討熱場,本研究加入流場一同探討。板式熱交換器板片的深寬比及幾何角度作為設計參數,產生多組不同幾何的熱交換器板片,在固定雷諾數、冷熱流體入口定溫的條件下模擬逆向流,為了使邊界條件符合物理現象而外推出絕熱段,以網格獨立測性測試確認解趨近穩定及能量守恆公式(誤差<2%)確定模擬的正確性,數值模擬的結果利用摩擦因子、紐賽數、協同角alpha及協同角theta進行探討,並得出幾何形狀對熱傳及壓降的關係及原因。再由類神經網路建立熱交換器性能模型,並透過遺傳演算法進行最佳化方法:(1)以熱交換器性能係數(PEC)為目標,尋找到的結果與數值模擬驗證並且得到高於訓練組的熱交換器性能係數(PEC),顯示熱最佳化方法的準確度以及尋找新穎答案的潛力(2)搭配NSGA-II建立以紐賽數及摩擦因子為目標的柏拉圖前沿。本研究提供山型紋板式熱交換器設計者權衡紐賽數及摩擦因子的設計參考。

    This paper mainly discusses the numerical simulations of thermal-hydraulic performance for different geometries chevron-type plate heat exchangers with filed synergy theory, and optimization design. The dimensionless geometric parameters Pc/b and beta are used as design parameters. The counter flow is simulated under the boundary conditions of a fixed Reynolds number and a constant temperature at the inlet of the cold and hot fluid. In order to make the boundary conditions satisfy physic property, the adiabatic section is added. The grid independent test was used to confirm the solution stability and the energy conservation formula to determine the correctness. The results is evaluated by fiction factor, Nusselt number and filed synergy theory and obtained the relationship of geometric parameters to heat transfer and pressure drop. The optimization design is conducted by using the neural network(NN) and the genetic algorithm(GA), we obtained the following results. (1) Considering the performance evaluation criteria(PEC) as an objective function, the results found are verified by numerical simulations and better than the training set, showing the accuracy of the optimization method and the potential for finding novel answers. (2) Using NSGA-II to establish a Pareto front with Nusselt number and friction factor. We provide design suggestions and design parameter tables of the Pareto front for reference.

    摘要 I Extended Abstract II 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XI 符號表 XII 第一章、 緒論 1 1-1 前言 1 1-2 文獻回顧 5 1-3 研究動機 8 第二章、 理論基礎 10 2-1 物理模型及基本假設 10 2-2 統御方程式及邊界條件 11 2-2-1 統御方程式 11 2-2-2 邊界條件 12 2-3 數據計算 12 2-4 類神經網路 14 2-4-1 類神經網路的架構 15 2-4-2 倒傳遞類神經網路 16 2-4-3 板式熱交換器性能模型建立 17 2-5 遺傳演算法 18 2-5-1 遺傳演算法的特性 19 2-5-2 演算法的步驟 19 2-6 多目標遺傳演算法 22 2-6-1 菁英策略非支配排序遺傳演算法 22 2-7 場協同理論 23 2-7-1 熱場觀點的場協同 23 2-7-2 流場觀點的場協同 26 第三章、 數值方法 35 3-1 有限元素基礎理論 35 3-2 板式熱交換器之建模 36 3-2-1 模型建立 36 3-2-2 網格生成 36 3-2-3 紊流模型 37 3-3 求解器與後處理 39 3-3-1 求解器 39 3-3-2 後處理 40 3-4 數值模擬流程 40 第四章、 結果與討論 46 4-1 網格獨立性 46 4-2 流場特性分析 48 4-3 熱場特性分析 60 4-4 最佳化設計 67 4-4-1 單目標最佳化 68 4-4-2 柏拉圖前沿 68 第五章、 結論 74 參考文獻 76

    Ayub, Z. H. (2003). Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators. Heat transfer engineering, 24(5), 3-16.
    De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. PhD thesis.-University of Michigan, Ann Arbor, 1975.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
    Ding, J., & Manglik, R. M. (1996). Analytical solutions for laminar fully developed flows in double-sine shaped ducts. Heat and Mass Transfer, 31(4), 269-277.
    Focke, W. W., & Knibbe, P. G. (1986). Flow visualization in parallel-plate ducts with corrugated walls. Journal of Fluid Mechanics, 165(1), 73-77.
    Focke, W. W. (1983). Turbulent convective transfer in plate heat exchangers. International Communications in Heat and Mass Transfer, 10(3), 201-210.
    Focke, W. W., Zachariades, J., & Olivier, I. (1985). The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers. International Journal of Heat and Mass Transfer, 28(8), 1469-1479.
    Guo, Z. Y., Li, D. Y., & Wang, B. X. (1998). A novel concept for convective heat transfer enhancement. International Journal of Heat and Mass Transfer, 41(14), 2221-2225.
    https://reurl.cc/3LLW2O
    https://reurl.cc/3L104j
    https://reurl.cc/7X133l
    https://reurl.cc/arWNNX
    https://reurl.cc/lVx55l
    https://reurl.cc/mnmvvY
    https://reurl.cc/odDqZq
    Huang, M. L., Hung, Y. H., & Yang, Z. S. (2016). Validation of a method using Taguchi, response surface, neural network, and genetic algorithm. Measurement, 94, 284-294.
    Jamzad, P., Kenna, J., & Bahrami, M. (2019). Development of novel plate heat exchanger using natural graphite sheet. International Journal of Heat and Mass Transfer, 131, 1205-1210
    Khan, T. S., Khan, M. S., Chyu, M. C., & Ayub, Z. H. (2010). Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations. Applied Thermal Engineering, 30(8-9), 1058-1065.
    Liu, W., Liu, Z., & Ma, L. (2012). Application of a multi-field synergy principle in the performance evaluation of convective heat transfer enhancement in a tube. Chinese Science Bulletin, 57(13), 1600-1607.
    Lee, J., & Lee, K. S. (2014). Flow characteristics and thermal performance in chevron type plate heat exchangers. International Journal of Heat and Mass Transfer, 78, 699-706.
    Muley, A., & Manglik, R. M. (1999). Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates.
    Naik, V. R., & Matawala, V. K. (2013). Experimental investigation of single phase chevron type gasket plate heat exchanger. Stainless steel, 316, 16-5.
    Okada, K., Ono, M., Tomimura, T., Okuma, T., Konno, H., & Ohtani, S. (1972). Design and heat transfer characteristics of new plate heat exchanger. Heat Transfer Japanese Research, 1(1), 90-95.
    Sarraf, K., Launay, S., & Tadrist, L. (2015). Complex 3D-flow analysis and corrugation angle effect in plate heat exchangers. International Journal of Thermal Sciences, 94, 126-138.
    Shah, R. K., & Focke, W. W. (1988). Plate heat exchangers and their design theory. Heat transfer equipment design, 227, 254.
    Tao, W. Q., He, Y. L., & Chen, L. (2019). A comprehensive review and comparison on heatline concept and field synergy principle. International Journal of Heat and Mass Transfer, 135, 436-459.
    Troupe, R. A., Morgan, J. C., & Prifiti, J. (1960). The plate heater versatile chemical engineering tool. Chemical Engineering Progress, 56(1), 124-128.
    Zhang, J., Zhu, X., Mondejar, M. E., & Haglind, F. (2019). A review of heat transfer enhancement techniques in plate heat exchangers. Renewable and Sustainable Energy Reviews, 101, 305-328.
    王啟川. 熱交換器設計. (五南圖書,民90)

    下載圖示 校內:2025-07-17公開
    校外:2025-07-17公開
    QR CODE