| 研究生: |
曾莞心 Tseng, Wan-Hsin |
|---|---|
| 論文名稱: |
常壓非熱微電漿裝置對糖尿病足傷口作用之臨床前及臨床試驗申請 Application for Preclinical and Clinical Trials of the Effect of Atmospheric Pressure Non-Thermal Micro-plasma Device on Diabetic Foot Ulcer |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 共同指導教授: |
潘信誠
Pan, Shin-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 首次人體研究 、糖尿病足 、非熱微電漿 、DIN SPEC 91315規範 、臨床前療效指標 |
| 外文關鍵詞: | FIH study, Diabetic foot ulcers, Non-thermal micro-plasma, DIN SPEC 91315 guidelines, Preclinical efficacy indicator |
| 相關次數: | 點閱:138 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非熱微電漿裝置舒感電漿活膚儀(Gentle Plasma Skin Regenerator Model 2, GPSR_M2),先前已完成電漿處理纖維母細胞株生物相容性測試、傷口癒合大/小動物模式實驗以及血液凝固效應及機制探討。由研究結果宣稱預期用途為促進傷口癒合,但根據財團法人醫藥品查驗中心(Center of Drug Evaluation, CDE)的諮詢結果,由於國內仍無具備等同「預期用途」及「技術特點」之「類似品」,GPSR_M2被判定為ClassⅡ新醫材,根據此適應症仍須提交臨床資料。因此,考量本研究為First in human study (首次人體研究, FIH study),並進行國外類似品臨床試驗發展文獻回顧,將適應症由各類傷口限縮至糖尿病足(Diabetic foot ulcers, DFU)之慢性傷口,欲進行非熱微電漿對糖尿病足傷口之作用之臨床試驗,以佐證GPSR_M2之安全性。本研究分為三部分佐證GPSR_M2之安全性,第一部分使用DIN SPEC 91315之規範進行電漿源實驗,結果顯示在5 mm之距離時,電漿溫度小於40 °C,且總UV劑量小於3000 μJ/cm2,符合其規範證實GPSR_M2產出具有生物相容性之電漿。第二部分根據ISO 10993-5之規範進行L929細胞電漿處理實驗,結果顯示各組電漿處理參數存活率皆大於70 %,符合其規範證實GPSR_M2之電漿不具細胞毒性,確認臨床前之安全性。並使用符合適應症之人體脂肪幹細胞(Adipose Derived Stem Cells, ADSC)進行電漿處理,最後選擇與未處理組相比,使用t-test統計分析具有顯著差異之結果促進ADSC增殖與遷移的30 sec/cm2作為電漿處理參數完成FIH study設計。第三部分根據本國醫療器材臨床試驗作業規範(Good Clinical Practice, GCP),通過國立成功大學醫學院附設醫院人體研究倫理審查委員會(Institutional Review Board of National Cheng Kung University Hospital, NCKUH IRB)與衛生福利部食品藥物管理署(Taiwan Food and Drug Administration, TFDA)兩單位之核准證實FIH study之安全性。
This study aimed to conduct a first in human study (FIH study) to validate the safety of the Gentle Plasma Skin Regenerator Model-2 (GPSR_M2) in treating diabetic foot ulcers using non-thermal micro-plasma. The safety of GPSR_M2 was confirmed through three study segments. Plasma source experiments were conducted following DIN SPEC 91315 guidelines. The results demonstrated that GPSR_M2's plasma, when measured at a distance of 5 mm, exhibited a temperature below 40°C and a total UV dose below 3000 μJ/cm2. These findings met the established bio-compatibility standards. Plasma treatment on L929 cells, in accordance with ISO 10993-5, revealed that all parameters maintained over 70% cell viability. This outcome aligned with the non-cytotoxic plasma standards. Human adipose-derived stem cells (ADSCs) were selected as preclinical efficacy indicator. The results of plasma treatment demonstrated significant differences in proliferation and migration when compared to untreated groups. Based on these findings, a parameter of 30 sec/cm2 was chosen for the experimental design of the FIH study. Subsequently, the FIH study received approvals from the Institutional Review Board of the National Cheng Kung University Hospital (NCKUH IRB) and the Taiwan Food and Drug Administration (TFDA). Throughout the trial, adherence to Good Clinical Practice (GCP) guidelines was ensured to maintain the safety and integrity of the study.
[1] R. Laurano, M. Boffito, G. Ciardelli, and V. Chiono, “Wound dressing products: A translational investigation from the bench to the market,” Engineered Regeneration, vol. 3, pp. 182-200, 2022.
[2] A. Joseph, R. Rane, and A. Vaid, “Atmospheric Pressure Plasma Therapy for Wound Healing and Disinfection: A Review,” Wound Healing Research, pp. 621-641, 2021.
[3] W. Crookes, “On radiant matter spectroscopy: A new method of spectrum analysis,” Journal of the Franklin Institute, vol. 116, no. 2, pp. 118-128, 1883.
[4] B. Haertel, T. Von Woedtke, K.-D. Weltmann, and U. Lindequist, “Non-thermal atmospheric-pressure plasma possible application in wound healing,” Biomolecules & therapeutics, vol. 22, no. 6, pp. 477, 2014.
[5] A. Fridman, A. Chirokov, and A. Gutsol, “Non-thermal atmospheric pressure discharges,” Journal of Physics D: Applied Physics, vol. 38, no. 2, pp. R1, 2005.
[6] J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J. L. Zimmermann, T. Shimizu, and S. Karrer, “Plasma medicine: possible applications in dermatology,” JDDG: Journal der Deutschen Dermatologischen Gesellschaft, vol. 8, no. 12, pp. 968-976, 2010.
[7] T. Bernhardt, M. L. Semmler, M. Schäfer, S. Bekeschus, S. Emmert, and L. Boeckmann, “Plasma medicine: Applications of cold atmospheric pressure plasma in dermatology,” Oxidative medicine and cellular longevity, vol. 2019, 2019.
[8] H.-R. Metelmann, T. von Woedtke, K.-D. Weltmann, and S. Emmert, “Textbook of Good Clinical Practice in Cold Plasma Therapy,” Springer, 2022.
[9] T. Lan, L. Tang, A. Xia, M. R. Hamblin, D. Jian, and R. Yin, “Comparison of fractional micro‐plasma radiofrequency and fractional microneedle radiofrequency for the treatment of atrophic acne scars: a pilot randomized split‐face clinical study in China,” Lasers in Surgery and Medicine, vol. 53, no. 7, pp. 906-913, 2021.
[10] D. L. Sackett, “Evidence-based medicine,” Seminars in perinatology, vol. 21. no. 1. WB Saunders, pp. 3-5, 1997.
[11] W.-K. Huang, C.-C. Weng, J.-D. Liao, Y.-C. Wang, and S.-F. Chuang, “Capillary-tube-based micro-plasma system for disinfecting dental biofilm,” International Journal of Radiation Biology, vol. 89, no. 5, pp. 364-370, 2013.
[12] C.-C. Weng, J.-D. Liao, H.-H. Chen, T.-Y. Lin, and C.-L. Huang, “Capillary-tube-based oxygen/argon micro-plasma system for the inactivation of bacteria suspended in aqueous solution,” International Journal of Radiation Biology, vol. 87, no. 9, pp. 936-943, 2011.
[13] C.-C. Weng, Y.-T. Wu, J.-D. Liao, C.-Y. Kao, C.-C. Chao, J.-E. Chang, and B.-W. Hsu, “Inactivation of bacteria by a mixed argon and oxygen micro-plasma as a function of exposure time,” International Journal of Radiation Biology, vol. 85, no. 4, pp. 362-368, 2009.
[14] M. H. T. Ngo, J. D. Liao, P. L. Shao, C. C. Weng, and C. Y. Chang, “Increased Fibroblast Cell Proliferation and Migration Using Atmospheric N2/A r Micro‐Plasma for the Stimulated Release of Fibroblast Growth Factor‐7,” Plasma Processes and Polymers, vol. 11, no. 1, pp. 80-88, 2014.
[15] M. H. Ngo Thi, P. L. Shao, J. D. Liao, C. C. K. Lin, and H. K. Yip, “Enhancement of angiogenesis and epithelialization processes in mice with burn wounds through ROS/RNS signals generated by non‐thermal N2/Ar micro‐plasma,” Plasma Processes and Polymers, vol. 11, no. 11, pp. 1076-1088, 2014.
[16] P.-L. Shao, J.-D. Liao, T.-W. Wong, Y.-C. Wang, S. Leu, and H.-K. Yip, “Enhancement of wound healing by non-thermal N2/Ar micro-plasma exposure in mice with fractional-CO2-laser-induced wounds,” PloS one, vol. 11, no. 6, pp. e0156699, 2016.
[17] P.-L. Shao, J.-D. Liao, S.-C. Wu, Y.-H. Chen, and T.-W. Wong, “Microplasma treatment versus negative pressure therapy for promoting wound healing in diabetic mice,” International journal of molecular sciences, vol. 22, no. 19, pp. 10266, 2021.
[18] Z. Chen, G. Chen, R. Obenchain, R. Zhang, F. Bai, T. Fang, H. Wang, Y. Lu, R. E. Wirz, and Z. Gu, “Cold atmospheric plasma delivery for biomedical applications,” Materials Today, vol. 54, pp. 153-188, 2022.
[19] S. Reuter, T. Von Woedtke, and K.-D. Weltmann, “The kINPen—A review on physics and chemistry of the atmospheric pressure plasma jet and its applications,” Journal of Physics D: Applied Physics, vol. 51, no. 23, pp. 233001, 2018.
[20] R. Bussiahn, C. Ulrich, J. Lademann, T. von Woedtke, and K. Weltmann, “kinpen MED: a plasma source for clinical trials,” Orléans-France, pp. 33, 2012.
[21] S. Arndt, A. Schmidt, S. Karrer, and T. von Woedtke, “Comparing two different plasma devices kINPen and Adtec SteriPlas regarding their molecular and cellular effects on wound healing,” Clinical Plasma Medicine, vol. 9, pp. 24-33, 2018.
[22] L. Gan, S. Zhang, D. Poorun, D. Liu, X. Lu, M. He, X. Duan, and H. Chen, “Medical applications of nonthermal atmospheric pressure plasma in dermatology,” JDDG: Journal der Deutschen Dermatologischen Gesellschaft, vol. 16, no. 1, pp. 7-13, 2018.
[23] S. Bekeschus, A. Schmidt, K.-D. Weltmann, and T. von Woedtke, “The plasma jet kINPen–A powerful tool for wound healing,” Clinical Plasma Medicine, vol. 4, no. 1, pp. 19-28, 2016.
[24] A. Schmidt, S. Bekeschus, K. Wende, B. Vollmar, and T. von Woedtke, “A cold plasma jet accelerates wound healing in a murine model of full‐thickness skin wounds,” Experimental dermatology, vol. 26, no. 2, pp. 156-162, 2017.
[25] B. Stratmann, T.-C. Costea, C. Nolte, J. Hiller, J. Schmidt, J. Reindel, K. Masur, W. Motz, J. Timm, and W. Kerner, “Effect of cold atmospheric plasma therapy vs standard therapy placebo on wound healing in patients with diabetic foot ulcers: a randomized clinical trial,” JAMA network open, vol. 3, no. 7, pp. e2010411-e2010411, 2020.
[26] H.-R. Metelmann, T. Von Woedtke, K.-D. Weltmann, and S. Emmert, “Textbook of good clinical practice in cold plasma therapy,” Springer, 2022.
[27] T. Kisch, A. Helmke, S. Schleusser, J. Song, E. Liodaki, F. H. Stang, P. Mailaender, and R. Kraemer, “Improvement of cutaneous microcirculation by cold atmospheric plasma (CAP): Results of a controlled, prospective cohort study,” Microvascular research, vol. 104, pp. 55-62, 2016.
[28] F. Brehmer, H. Haenssle, G. Daeschlein, R. Ahmed, S. Pfeiffer, A. Görlitz, D. Simon, M. Schön, D. Wandke, and S. Emmert, “Alleviation of chronic venous leg ulcers with a hand‐held dielectric barrier discharge plasma generator (PlasmaDerm® VU‐2010): results of a monocentric, two‐armed, open, prospective, randomized and controlled trial (NCT 01415622),” Journal of the European Academy of Dermatology and Venereology, vol. 29, no. 1, pp. 148-155, 2015.
[29] M. Moelleken, F. Jockenhoefer, C. Wiegand, J. Buer, S. Benson, and J. Dissemond, “Pilot study on the influence of cold atmospheric plasma on bacterial contamination and healing tendency of chronic wounds,” JDDG: Journal der Deutschen Dermatologischen Gesellschaft, vol. 18, no. 10, pp. 1094-1101, 2020.
[30] G. Han, and R. Ceilley, “Chronic wound healing: a review of current management and treatments,” Advances in therapy, vol. 34, no. 3, pp. 599-610, 2017.
[31] D. Paquette, and V. Falanga, “Leg ulcers,” Clinics in geriatric medicine, vol. 18, no. 1, pp. 77-88, 2002.
[32] Sen, Chandan K, “Human wounds and its burden: an updated compendium of estimates,” Advances in wound care 8, no. 2, pp. 39-48, 2019.
[33] C. Dunnill, T. Patton, J. Brennan, J. Barrett, M. Dryden, J. Cooke, D. Leaper, and N. T. Georgopoulos, “Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS‐modulating technologies for augmentation of the healing process,” International wound journal, vol. 14, no. 1, pp. 89-96, 2017.
[34] D. Trachootham, W. Lu, M. A. Ogasawara, N. R.-D. Valle, and P. Huang, “Redox regulation of cell survival,” Antioxidants & redox signaling, vol. 10, no. 8, pp. 1343-1374, 2008.
[35] H.-M. Shen, and S. Pervaiz, “Reactive oxygen species in cell fate decisions,” Essentials of apoptosis, Springer, pp. 199-221, 2009.
[36] I. De Luca, P. Pedram, A. Moeini, P. Cerruti, G. Peluso, A. Di Salle, and N. Germann, “Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review,” Applied Sciences, vol. 11, no. 4, pp. 1713, 2021.
[37] M. S. Mann, R. Tiede, K. Gavenis, G. Daeschlein, R. Bussiahn, K.-D. Weltmann, S. Emmert, T. von Woedtke, and R. Ahmed, “Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED,” Clinical Plasma Medicine, vol. 4, no. 2, pp. 35-45, 2016.
[38] I. C. o. N.-I. R. Protection, “Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation),” Health Physics, vol. 87, no. 2, pp. 171-186, 2004.
[39] N. Zhao, “Induced differentiation of adipose-derived stem cells,” Chinese Journal of Tissue Engineering Research, vol. 19, no. 6, pp. 969, 2015.
[40] E. Seo, J. S. Lim, J.-B. Jun, W. Choi, I.-S. Hong, and H.-S. Jun, “Exendin-4 in combination with adipose-derived stem cells promotes angiogenesis and improves diabetic wound healing,” Journal of translational medicine, vol. 15, no. 1, pp. 1-9, 2017.
[41] R. D. Galiano, O. M. Tepper, C. R. Pelo, K. A. Bhatt, M. Callaghan, N. Bastidas, S. Bunting, H. G. Steinmetz, and G. C. Gurtner, “Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells,” The American journal of pathology, vol. 164, no. 6, pp. 1935-1947, 2004.
[42] G. Marino, M. Moraci, E. Armenia, C. Orabona, R. Sergio, G. De Sena, V. Capuozzo, M. Barbarisi, F. Rosso, and G. Giordano, “Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease,” journal of surgical research, vol. 185, no. 1, pp. 36-44, 2013.
[43] R. Singh, L. Kishore, and N. Kaur, “Diabetic peripheral neuropathy: current perspective and future directions,” Pharmacological research, vol. 80, pp. 21-35, 2014.
[44] S. Guo, Y. Cheng, Y. Ma, and X. Yang, “Endothelial progenitor cells derived from CD34+ cells form cooperative vascular networks,” Cellular Physiology and Biochemistry, vol. 26, no. 4-5, pp. 679-688, 2010.
[45] S. Shakya, Y. Wang, J. A. Mack, and E. V. Maytin, “Hyperglycemia-induced changes in hyaluronan contribute to impaired skin wound healing in diabetes: review and perspective,” International journal of cell biology, vol. 2015, 2015.
[46] H. Zhang, A. Kot, Y.-A. E. Lay, F. A. Fierro, H. Chen, N. E. Lane, and W. Yao, “Acceleration of fracture healing by overexpression of basic fibroblast growth factor in the mesenchymal stromal cells,” Stem cells translational medicine, vol. 6, no. 10, pp. 1880-1893, 2017.
[47] S. C. Atsmoni, A. Brener, and Y. Roth, “Diabetes in the practice of otolaryngology,” Diabetes & Metabolic Syndrome: Clinical Research & Reviews, vol. 13, no. 2, pp. 1141-1150, 2019.
[48] W.-S. Kim, B.-S. Park, J.-H. Sung, J.-M. Yang, S.-B. Park, S.-J. Kwak, and J.-S. Park, “Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts,” Journal of dermatological science, vol. 48, no. 1, pp. 15-24, 2007.
[49] R. Mittler, “ROS are good,” Trends in plant science, vol. 22, no. 1, pp. 11-19, 2017.
[50] N. Tandon, E. Cimetta, A. Villasante, N. Kupferstein, M. D. Southall, A. Fassih, J. Xie, Y. Sun, and G. Vunjak-Novakovic, “Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway,” Experimental cell research, vol. 320, no. 1, pp. 79-91, 2014.
[51] T. R. Hurd, M. DeGennaro, and R. Lehmann, “Redox regulation of cell migration and adhesion,” Trends in cell biology, vol. 22, no. 2, pp. 107-115, 2012.
[52] S. ten Raa, M. P. Van den Tol, W. Sluiter, L. J. Hofland, C. H. van Eijck, and H. Jeekel, “The role of neutrophils and oxygen free radicals in post-operative adhesions,” Journal of Surgical Research, vol. 136, no. 1, pp. 45-52, 2006.
[53] P. Mishra, U. Singh, C. M. Pandey, P. Mishra, and G. Pandey, “Application of student's t-test, analysis of variance, and covariance,” Annals of cardiac anaesthesia, vol. 22, no. 4, pp. 407, 2019.
[54] X. Ni, X. Shan, L. Xu, W. Yu, M. Zhang, C. Lei, N. Xu, J. Lin, and B. Wang, “Adipose-derived stem cells combined with platelet-rich plasma enhance wound healing in a rat model of full-thickness skin defects,” Stem Cell Research & Therapy, vol. 12, no. 1, pp. 1-11, 2021.
[55] W. Wu, J. Yang, X. Feng, H. Wang, S. Ye, P. Yang, W. Tan, G. Wei, and Y. Zhou, “MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells,” Molecular cancer, vol. 12, no. 1, pp. 1-11, 2013.
[56] T. Liu, L. Zhao, Y. Zhang, W. Chen, D. Liu, H. Hou, L. Ding, and X. Li, “Ginsenoside 20 (S)-Rg3 targets HIF-1α to block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells,” PLoS One, vol. 9, no. 9, pp. e103887, 2014.
[57] M. Oparka, J. Walczak, D. Malinska, L. M. van Oppen, J. Szczepanowska, W. J. Koopman, and M. R. Wieckowski, “Quantifying ROS levels using CM-H2DCFDA and HyPer,” Methods, vol. 109, pp. 3-11, 2016.
[58] P. Boukamp, R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, and N. E. Fusenig, “Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line,” The Journal of cell biology, vol. 106, no. 3, pp. 761-771, 1988.
[59] R. Bussiahn, N. Lembke, R. Gesche, T. von Woedtke, and K. Weltmann, “Plasma sources for biomedical applications,” Hyg. Med, vol. 38, no. 5, pp. 212-216, 2013.
[60] A. Sarani, A. Y. Nikiforov, and C. Leys, “Atmospheric pressure plasma jet in Ar and Ar/H 2 O mixtures: Optical emission spectroscopy and temperature measurements,” Physics of Plasmas, vol. 17, no. 6, pp. 063504, 2010.
[61] J. H. Fujiyama-Novak, C. K. Gaddam, D. Das, R. L. Vander Wal, and B. Ward, “Detection of explosives by plasma optical emission spectroscopy,” Sensors and Actuators B: Chemical, vol. 176, pp. 985-993, 2013.
[62] Q. Xiong, A. Y. Nikiforov, M. A. González, C. Leys, and X. P. Lu, “Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy,” Plasma Sources Science and Technology, vol. 22, no. 1, pp. 015011, 2012.
[63] J. S. Park, J. Piao, G. Park, and H. S. Hong, “Substance-P restores cellular activity of ADSC impaired by oxidative stress,” Antioxidants, vol. 9, no. 10, pp. 978, 2020.
[64] V. Hahn, D. Grollmisch, H. Bendt, T. von Woedtke, B. Nestler, K.-D. Weltmann, and T. Gerling, “Concept for improved handling ensures effective contactless plasma treatment of patients with kINPen® MED,” Applied Sciences, vol. 10, no. 17, pp. 6133, 2020.
[65] T. E. Serena, R. Yaakov, S. Moore, W. Cole, S. Coe, R. Snyder, K. Patel, B. Doner, M. A. Kasper, and R. Hamil, “A randomized controlled clinical trial of a hypothermically stored amniotic membrane for use in diabetic foot ulcers,” Journal of Comparative Effectiveness Research, vol. 9, no. 1, pp. 23-34, 2020.
[66] J. Duan, X. Lu, and G. He, “On the penetration depth of reactive oxygen and nitrogen species generated by a plasma jet through real biological tissue,” Physics of Plasmas, vol. 24, no. 7, pp. 073506, 2017.
[67] H. Ramirez, S. B. Patel, and I. Pastar, “The role of TGFβ signaling in wound epithelialization,” Advances in wound care, vol. 3, no. 7, pp. 482-491, 2014.
[68] C. Y. Fong, K. Tam, S. Cheyyatraivendran, S. U. Gan, K. Gauthaman, A. Armugam, K. Jeyaseelan, M. Choolani, A. Biswas, and A. Bongso, “Human Wharton's jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds,” Journal of cellular biochemistry, vol. 115, no. 2, pp. 290-302, 2014.