簡易檢索 / 詳目顯示

研究生: 黃玲嘉
Huang, Ling-Chia
論文名稱: 探討知覺風險在行動裝置購物中對於績效期望、社會影響與使用者意圖的干擾效應
The Moderating Role of Perceived Risk in the Relationships between Performance Expectancy, Social Influence and Behavior Intention to Mobile Shopping
指導教授: 陳永信
Chen, Yuan-Hsin
學位類別: 碩士
Master
系所名稱: 管理學院 - 國際經營管理研究所碩士在職專班
Institute of International Management (IIMBA--Master)(on the job class)
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 85
中文關鍵詞: 科技接受模式行為意圖使用者行為知覺風險行動裝置購物
外文關鍵詞: Technology acceptance model, Behavioural intention, Use behavior, Perceived risk, Mobile shopping
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著智慧型手機的快速成長,行動裝置購物也越來越引人注意。許
    多企業也開發了行動裝置購務專業、平台或是行動應用程式來吸引使用者。與網
    路購物不同的是,行動裝置購物可以隨時進行,不受地點與時間限制,消費者只
    需要使用他們手邊的行動裝置就可以購買物品。本研究探討行動裝置購物之使用
    者意圖與四個構面: 績效期望、努力期望、社會影響、個人使用習慣之關係。「知覺風險」為干擾變數,本研究也分析干擾變數對於使用者意圖與績效期望和社會影響之作用關係。

    透過線上問卷調查,本研究共搜集了213 份有效問卷。本研究進行了敘述性
    變量分析、信度分析、因素分析、效度分析及路徑分析等。研究結果顯示使用者
    對於行動裝置購物的使用意圖皆有正面的回應。此外,在績效期望、社會影響及
    個人使用習慣三個構面中,對於使用者意圖有正向的影響;而知覺風險對於社會
    影響和使用者意圖之間具有干擾作用。實務管理探討與本研究之限制及建議也一
    併呈現在此論文中。

    In recent years, with the growth of the smartphone, mobile shopping has become popular in Taiwan. More and more enterprises provide mobile shopping platforms applications to attract customers. Not like internet shopping, one of the features for mobile shopping is no time and place limitation. Customers could purchase products through their mobile devices anywhere. The study is to investigate the relationships among performance expectancy, effort expectancy, social influence, habit and behavior intention to mobile shopping. In addition, perceived risk is introduced to the conceptual framework as the moderator for evaluating how perceived risk demonstrates its moderating effects on the relationship between performance expectancy, social influence and behavior intention.

    Through online survey, a total of 2013 effective questionnaires have been collected. In this study, descriptive analysis, confirmatory factor analysis, path analysis and moderating effect analysis were employed. The finding shows that mobile shopping is highly accepted by customers in Taiwan. The results indicate that performance expectancy, social influence expectancy and habit have positive impact on customers’ behavior intention to mobile shopping. Further, it is discovered that perceived risk exists in the relationship between social influence and behaviour intention. The managerial implication and limitations and suggestions are also presented in the study.

    TABLE OF CONTENTS ABSTRACT....................................................................................................................I 摘要............................................................................................................................... II ACKNOWLEDGEMENTS.........................................................................................III TABLE OF CONTENTS.............................................................................................IV LIST OF TABLES..................................................................................................... VII LIST OF FIGURES .....................................................................................................IX CHAPTER ONE INTRODUCTION.............................................................................1 1.1 Research Background and Motivation.............................................................1 1.2 Research Objective and Scope.........................................................................7 1.3 Contribution of the Study. ................................................................................8 1.4 Research Procedures. .....................................................................................10 1.5 Research Structure. ........................................................................................11 CHAPTER TWO LITERATURE REVIEW...............................................................13 2.1 Technology Acceptance Model (TAM)..........................................................13 2.2 UTAUT and UTAUT2. ..................................................................................16 2.2.1 Performance Expectancy. ....................................................................21 2.2.2 Efforts Expectancy. ..............................................................................22 2.2.3 Social Influence. ..................................................................................23 2.2.4 Habit....................................................................................................24 2.2.5 Behavioral Intention............................................................................25 2.3 Perceived Risk. ..............................................................................................25 2.4 Hypothesis Development. ..............................................................................27 2.4.1 The Relationship among Performance Expectancy, Effort Expectancy, Social Influence and the Behavioral Intention to Adopting Mobile Shopping Technology. ..........................................................................27 2.4.2 The Relationship among Habit and the Behavioral Intention to Adopting Mobile Shopping Technology. ..............................................29 2.4.3 The Moderating Effect of Perceived Risk. ...........................................29 CHAPTER THREE RESEARCH DESIGN AND METHODOLOGY......................31 3.1 The Research Model. .....................................................................................31 3.2 The Construct Measurement Procedures. ......................................................32 3.3 Questionnaire and Sampling Plan. .................................................................36 3.4 The Data Analysis Procedure. ........................................................................37 CHAPTER FOUR RESEARCH RESULTS ...............................................................39 4.1 Descriptive Analysis. .....................................................................................39 4.1.1 Characteristics of Respondents. ..........................................................39 4.1.2 Measurement Results of Research Variables. ......................................42 4.2 Score Reliability. ............................................................................................44 4.3 Item-to-Total Correlation. ..............................................................................46 4.4 Item to Item Correlation Matrix.....................................................................48 4.5 Confirmatory Factor Analysis (CFA).............................................................48 4.5.1 Convergent Validity..............................................................................48 4.5.2 Discriminant Validity. ..........................................................................58 4.6 Path Analysis..................................................................................................60 4.7 Moderating Effect by Multiple Regression....................................................61 4.7.1 Moderating Effect of Perceived Risk between PE and BI. ..................62 4.7.2 Moderating Effect of Perceived Risk between SI and BI.....................63 CHAPTER FIVE CONCLUSION AND SUGGESTIONS.........................................65 5.1 Research Conclusions and Discussions. ........................................................65 5.2 Research Contribution. ..................................................................................68 5.3 Managerial Implications. ...............................................................................68 5.4 Research Limitations and Future Research Suggestions. ..............................69 REFERENCES ............................................................................................................71 APPENDICES .............................................................................................................74 Appendix 1: Questionnaire. .................................................................................74 Appendix 2: Item to Item Correlation Matrix......................................................82

    REFERENCES
    Agarwal, R., & Prasad, J. (1997). The role of innovation characteristics and perceived voluntariness in the acceptance of information technologies. Decision Sciences, 28(3), 557-582.
    Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks, CA: Sage.
    Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
    Ajzen, I., & Fishbein, M. (2000). Attitudie and the attitude-behavior relations: Reasons and automatic processes (Vol. 11). Chichester UK: Wiley.
    Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. In D. Albarracín, B. T. Johnson, & M. P. Zanna (Eds.). Mahwah, NJ: Erlbaum.
    Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.
    Baird, I. S., & Thomas, H. (1985). Toward a contingency model of strategic risk taking. Academy of Management Review, 10(2), 230-243.
    Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall, Inc.
    Bauer, R. A. (1960). Consumer behavior as risk taking. Chicago: American Marketing Association.
    Changchit, C. (2006). Consumer perceptions of online shopping. Issues in Information Systems, 7(2), 177-181.
    Chau, P. Y. K. (1996). An empirical assessment of a modified technology acceptance model. Journal of Management Information Systems, 12(2), 185-204.
    Chiles, T. H., & McMackin, J. R. (1996). Integrating variable risk preferences, trust, and transaction cost economics. Academy of Management Journal, 21(1), 73-99.
    Compeau, D. R., Higgins, C. A., & Huff, S. (1999). Social cognitive theory and individual reactions to computing technology: Longitudinal study. MIS Quarterly, 23(2), 145-158.
    Cox, D. F. (1967). In D. F. Cox (Ed.), Risk taking and information handling in consumer behaivor. Boston: Harvard University.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-339.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.
    Dowling, G. R., & Staelin, R. (1994). A model of perceived risk and intended risk-handling activity. Journal of Consumer Research, 21(1), 119-134.
    Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An Introduction to theory and research. Reading, MA: Addison-Wesley
    Fisher, R. J., & Price, L. L. (1992). An investigation into the social context of early adoption behavior. Journal of Consumer Research, 19(3), 477-486.
    Guseman, D. S. (1981). Risk perception and risk reduction in consumer services. Marketing of Service, 18(3), 200-204.
    Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. Upper Saddle River, NJ: Pearson Prentice-Hall.
    Hossain, L., & Silva, A. (2009). Exploring user acceptance of technology using social networks. Journal of High Tech Technology Management Research, 20(1), 1-18.
    Huang, L. K. (2008). Chinese consumers' adoption intention toward 3G mobile phone. International Journal of Mobile Communications, 6(6), 770-786.
    Jaladeen, R. (2009). Organizational readiness and its contributing factors to adopt KM process: A conceptual model. Communication of the IBIMA, 8(17), 128-136.
    Kim, S. S., & Malhotra, N. K. (2005). Predicting system usage from intention and past use: Scale issues in the predictors. Decision Sciences, 36(1), 187-196.
    Klein, K. J., & Sorra, J. S. (1996). The challenge of innovation implementation. Academy of Management Review, 21(4), 1055-1080.
    Lai, V. S., & Li, H. (2005). Technology acceptance model for internet banking: An invariance analysis. Information & Management, 42(1), 373-386.
    Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(2), 191-204.
    Liang, H., Xue, Y., Ke, W., & Wei, K. (2010). Understanding the influence of team climate on IT use. Journal of the Association for Information Systems, 11(8), 414-432.
    Lim, N. (2003). Consumers' perceived risk: Sources versus consequences. Electronic Commerce Research and Applications, 2(3), 216-218.
    Lu, H. P., & Su, P. Y. J. (2009). Factors affecting purchase intention on mobile shopping websites. Internet Research, 19(4), 442-458.
    Lustig, C., & Meck, W. H. (2001). Paying attention to time as one gets older. Psychological Science, 12, 478-484.
    Marchewka, J. T., Liu, C., & Kostiwa, K. (2007). An application of the UTAUT model for understanding student perceptions using course management software. Communications of the IIMA, 7(2), 93-104.
    Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191
    Miyazaki, A. D., & Fernandez, A. (2000). Internet privacy and security: An examination of online retailers. Journal of Public Policy & Marketing, 19(1), 54-61.
    Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information System Research, 2(3), 192-222.
    Murray, K., & Häubl, G. (2007). Explaining cognitive lock-in: The role of skill-based habits of use in consumer choice. Journal of Consumer Research, 24(1), 77-88.
    Nasri, W., & Charfeddine, L. (2012). Motivationg sales people to contribute to marketing intelligence activities: An expectancy theory approach International Journal of Marketing Study, 4(1), 168-175.
    Nguyen, T. D., & Barrett, N. J. (2006). The adoption of the internet by export firms in transitional markets. Asia Pacific Journal of Marketing & Logistics, 18(1), 29-42.
    Parasuraman, A., Zeithamal, V. A., & Berry, L. L. (1996). The behavioral consequences of service quality. Journal of Marketing, 60(2), 31-46.
    Philiphs, L. A., Calanton, R., & Lee, M. T. (1994). International technology adoption: Behavior structure, demand certainty and culture. Journal of Business and Industrial Marketing, 9(2), 16-28.
    Pontiggia, A., & Virili, F. (2010). Network effects in technology acceptance: Laboratory experimental evidence. International Journal of Information Management, 30(1), 68-77.
    Rogers, E. (1983). Diffusion of innovations (3rd ed.). New York: The Free Press.
    Rogers, E. M. (1995). Diffusion of innovations (4th ed.). New York: The Free Press.
    Roselius, T. (1971). Consumer rankings of risk reduction methods. Journal of Marketing Research, 35(1), 56-61.
    Shergill, G. S., & Chen, Z. (2005). Web-based shopping: Consumers' attitudes towards online shopping in New Zealand. Journal of Electronic Commerce Research, 6(2), 79-94.
    Stone, R. N., & Gronhaug, K. (1993). Perceived risk: Further considerations for the marketing discipline. European Journal of Marketing, 27(3), 372-394.
    Suh, B., & Han, I. (2002). Effect of trust on consumer acceptance of internet banking. Electronic Commerce Research and Applications, 1(3), 247-263.
    Taylor, S., & Todd, P. A. (1995b). Understanding information technology usage: A test of competing models information systems research. Information Systems Research, 6(4), 144-176.
    Thompson, R. L., Haggins, C. A., & Hoewell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 15(1), 124-143.
    Thompson, S. H. T., & Yuany, Y. (2005). Online buying behavior: A transaction cost economics perspective. The International Journal of Management Science, 33(5), 451-465.
    Timmor, Y., & Rymon, T. (2007). To do or not to do: The dilemma of technology-based service improvement. Journal of Services Marketing, 21(2), 99-111.
    Triandis, H. C. (1997). Cross-cultural perspectives on personality. In R. Hogan, J. Johnson, & S. Briggs (Eds.), Handbook of personality psychology (3rd ed., pp. 439-464). San Diego, CA: Academic Press.
    Van Raaij, E. M., & Schepers, J. J. L. (2008). The acceptance and use of a virtual learning environment in China. Computers & Education, 50(3), 838 - 852.
    Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 45(2), 186-204.
    Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
    Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.
    Vijayasarathy, L. R. (2004). Predicting consumer intentions to use on-line shopping: The case of an augmented technology acceptance model. Information Management 41(6), 747-762.
    Wang, Y. S., Wang, Y. M., Lin, H. H., & Tang, T. I. (2003). Determinants of user acceptance of internet banking: An empirical study. International Journal of Service Industry Management, 14(6), 501-519.

    無法下載圖示 校內:2019-01-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE