| 研究生: |
李硯婷 Lee, Yen-Ting |
|---|---|
| 論文名稱: |
空照影像密匹配成果偵錯之瓶頸與解決辦法 Blunder Detection in Dense Matching Results of Aerial Images: Bottlenecks and Solutions |
| 指導教授: |
蔡展榮
Tsay, Jaan-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 密匹配 、偵錯 、品質評估 |
| 外文關鍵詞: | dense matching, blunder detection, quality evaluation |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,影像匹配技術已發展至密匹配 (dense matching)、甚至為逐像元匹配 (pixelwise matching) 的新紀元,藉由密匹配成果來產製DTM、正射影像、城市模型等攝影測量相關產品為目前的新趨勢,為了提升密匹配後續應用成果之精度和可靠度,密匹配成果之偵錯與品質評估,將成為必要之步驟。然而密匹配成果輸出之資料,為了縮短後續產品製作時間,而將密匹配點經前方交會,輸出物點雲三維地面坐標,此時密匹配偵錯與品質評估面臨一些瓶頸,包括(1) 無原始匹配點像坐標、(2) 匹配點數量龐大、(3) 相鄰匹配點之距離太近而產生相關參數的高相關,導致解算不穩定之現象。本文利用目視檢查、相對方位計算、像片三角計算以及獨立測量偵錯法,由人工介入至自動化方法進行密匹配成果之偵錯與品質評估,亦透過求得相對方位五個元素相同解與密點雲疏化,以解決密匹配偵錯之瓶頸問題。
本文使用17張空照影像進行測試,經匹配演算法SMM、SfM、DAISY、SGM得到的匹配點密度分別為5.66×10-5、1.31×10-4、3.18×10-2、6.69 點/像元。RO演算法自動挑選出932個均勻分布之匹配點,可得到相對方位五個元素相同解,再對所有匹配點進行偵錯與品質評估,成果顯示SMM、SGM錯誤率分別為2.82 %、2.36 %;共面不符值的均方根值分別為0.36 mm2、0.0006 mm2,密匹配錯誤點的位置 (和比例) 分別為:0階不連續面 (47.00 %)、1階不連續面 (50.72 %)、均調區 (0.05 %) 與樹林區 (2.23 %)。密點雲經由罩窗之篩選,以分批進行像片三角計算,可降低點雲資料量,並解決相鄰匹配點之距離短,導致像片三角測量參數高相關和解算不穩定的問題。相對方位與像片三角計算之平均偵錯速度,分別約14,984 匹配點/秒、292 匹配點/秒。獨立測量成果顯示,SGM密點雲與佈標點高程之差值絕對值,最大值為0.935 GSD、最小值0.006 GSD、平均值0.315 GSD、RMSD等於0.238 GSD,GSD為0.168 m。由以上之實驗說明,本文提出的四種偵錯法可有效解決密匹配成果偵錯之瓶頸問題。
This study presents four methods for blunder detection and quality evaluation on dense matching results. They are visual check, relative orientation (RO) using a huge number of tie points, bundle block adjustment, and comparing with ground truth data. To detect blunders, not only 3D object points but also 2D image points need image information. Therefore, there are bottlenecks, which include (1) no original image coordinates of matching points, (2) a huge number of matching points, and (3) the matching points in close distance making the calculation of bundle block adjustment unstable. The most probable values of RO five unknown elements are calculated and sparse dense points are selected to solve the bottlenecks in blunder detection. In this study, test data are the results of four matching algorithms. They are SIFT-based Multi-image Matching (SMM), Structure from Motion (SfM), DAISY and Semi-Global Matching (SGM). The result shows that dense point clouds in areas with break lines, roof ridge lines and shadow are prone to have more blunders than other areas. According to RO computation, the matching error percentage is 2.82% and 2.36% by SMM and SGM, respectively. From aerial triangulation, the matching accuracy and error percentage of SMM are 0.23pixel and 3.97%. The computation speed of RO and bundle block adjustment are 14,984 points/second and 292 points/second, separately. We compare the dense points determined by SGM with ground truth data.The absolute elevation differences show that the maximum is 0.935GSD, minimum is 0.006GSD, average is 0.315GSD and root mean square difference is 0.238GSD, where GSD is 0.168m.
王之卓,「攝影測量原理」,武漢大學出版社,大陸,第34-38頁,2007。
內政部,「建置都會區一千分之一數值航測地形圖作業工作手冊」,內政部國土
測繪中心網站,http://www.nlsc.gov.tw/websites/12_law/standard_law.aspx?l
a=1&le=2&li=13&m_sno=108&le2=3&li2=108,2011。
江師榮,「空載光達與二維數值地形圖的建物特徵自動化匹配研究」,國立成功大學測量及空間資訊學系碩士論文,臺南,2007。
江孟璁,「房屋模型面與空載影像之套合」,國立中央大學土木工程學系碩士論文,桃園,2009。
李明軒,「使用尺度不變特徵轉換進行空三影像之匹配策略設計」,國立成功大學測量及空間資訊學系碩士論文,臺南,2011。
洪錦魁,「C/C++教學範本」,上奇資訊,臺灣,第2-5-2-6頁,2010。
張庭榮,「SIFT演算法於立體對影像匹配與影像檢索應用之研究」,國立高雄應用科技大學土木工程與防災科技研究所碩士論文,高雄,2008。
曾宏正,「像片重疊及點位分佈對附加參數的影響」,國立成功大學航空測量研究所碩士論文,臺南,1985。
陳品清,「三角網之可靠度分析」,國立成功大學航空測量研究所碩士論文,臺南,1982。
陳育菘、揚志弘、廖育昇,「以SGM為基礎之三維深度影像估算的研究」,中華機械工程學會第二十九屆全國學術研討會論文集,高雄,2012。
鄒芳諭,「以非量測性相機進行近景攝影測量探討」,國立交通大學土木工程學系碩士論文,新竹,2010。
Ackermann, F., “Block Adjustment with Additional Parameters”, Photogrammetria, Vol. 36, Issue 6, pp. 217-227, October, 1981.
Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S. M., and Szeliski, R., “Building Rome in a Day”, Communications of the Association for Computing Machinery (ACM), Vol. 54, No. 10, pp. 105-112, 2011.
Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y., “An Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions”, Journal of the ACM, Vol. 45, Issue 6, pp. 891-923, 1998.
Baarda, W., “A Testing Procedure for Use in Geodetic Networks”, Netherlands Geodetic Commission, Vol. 2, No. 5, 1968.
Banz, C., Hesselbarth, S., Flatt, H., Blume, H., and Pirsch, P., “Real-Time Stereo Vision System Using Semi-Global Matching Disparity Estimation: Architecture and FPGA-Implementation”, IEEE Conference on Embedded Computer Systems (SAMOS), pp. 93-101, July, 2010.
Banz, C., Pirsch, P., and Blume, H., “Evaluation of Penalty Functions for Semi-Global Matching Cost Aggregation”, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIX-B3, pp. 1-6, Melbourne, Australia, 2012.
Barnea, D. I., and Silverman, H. F., “A Class of Algorithms for Fast Digital Image Registration”, IEEE Transactions on Computers, Vol. C-21, Issue 2, February, 1972.
Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V., “Speeded-Up Robust Features (SURF)”, Computer Vision and Image Understanding, Vol. 110, Issue 3, pp. 346-359, June, 2008.
Bentley, J. L., “Multidimensional Binary Search Trees Used for Associative Searching”, Communications of the ACM, Vol. 18, Issue 6, pp. 509-517, September, 1975.
Birchfield, S., and Tomasi, C., “Depth Discontinuities by Pixel-to-Pixel Stereo”, Sixth International Conference on Computer Vision, pp. 1073-1080, January, 1998.
Bleyer, M., and Gelautz, M., “A Layered Stereo Matching Algorithm Using Image Segmentation and Global Visibility Constraints”, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 59, Issue 3, pp. 128-150, May, 2005.
Boykov, Y., Veksler, O., and Zabih, R., “Fast Approximate Energy Minimization via Graph Cuts”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, Issue 11, pp. 1222-1239, November, 2001.
Carl, S., Bärisch, S., Lang, F., d’Angelo, M. P., Arefi, H., and Reinartz, P., “Operational Generation of High Resolution Digital Surface Models from Commercial Tri-Stereo Satellite Data”, 54th Photogrammetric Week, University of Stuttgart, Germany, pp. 261-269, September 9-13, 2013.
Chilian, A., and Hirschmüller, H., “Stereo Camera Based Navigation of Mobile Robots on Rough Terrain”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4571-5476, October, 2009.
d’Angelo, P., and Reinartz, P., “Semiglobal Matching Results on the ISPRS Stereo Matching Benchmark”, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-4/W19, pp. 79-84, Hannover, Germany, 2011.
Dellaert, F., Seitz, S. M., Thorpe, C. E., and Thrun, S., “Structure from Motion without Correspondence”, IEEE Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 557-564, 2000.
Egnal, G., “Mutual Information as a Stereo Correspondence Measure”, Technical Report MS-CIS-00-20, Computer and Information Science, University of Pennsylvania, 2000.
Fischler, M. A., and Bolles, R. C., “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography”, Communications of the ACM, Vol. 24, Issue 6, pp. 381-395, June, 1981.
Gehrig, S. K., Eberli, F., and Meyer, T., “A Real-Time Low-Power Stereo Vision Engine Using Semi-Global Matching”, International Conference on Computer Vision Systems, Lecture Notes in Computer Science (LNCS) Vol. 5815, pp. 134-143, 2009.
Gehrke, S., Morin, K., Downey, M., Boehrer, N., and Fuchs, T., “Semi-Global Matching: An Alternative to LIDAR for DSM Generation?”, Canadian Geomatics Conference and Symposium of Commission I, ISPRS, Calgary, Canada, June, 2010.
Gibson, J., and Marques, O., “Stereo Depth with a Unified Architecture GPU”, IEEE Computer Society Conference on Computer vision and Pattern Recognition, pp. 1-6, June, 2008.
Haala, N., Hastedt, H., Wolf, K., Ressl, C., and Baltrusch, S., “Digital Photogrammetric Camera Evaluation-Generation of Digital Elevation Models”, Photogrammetrie-Fernerkundung-Geoinformation (PFG), Vol. 2010, No. 2, pp. 99-115, 2010.
Haala, N., “Multiray Photogrammetry and Dense Image Matching”, 53rd Photogrammetric Week, University of Stuttgart, Germany, pp. 185-195, September 5-9, 2011.
Haala, N., “The Landscape of Dense Image Matching Algorithms”, 54th Photogrammetric Week, University of Stuttgart, Germany, pp. 271-284, September 9-13, 2013.
Hartley, R., and Zisserman, A., “Multiple View Geometry in Computer Vision (2nd ed.)”, Cambridge University Press, Chap. 12, March, 2004.
Hirschmüller, H., Innocent, P. R., and Garibaldi, J., “Real-Time Correlation-Based Stereo Vision with Reduced Border Errors”, International Journal of Computer Vision, Vol. 47, Issue 1-3, pp. 229-246, April, 2002.
Hirschmüller, H., “Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 807-814, June, 2005.
Hirschmüller, H., “Stereo Processing by Semiglobal Matching and Mutual Information”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, Issue 2, pp. 328-341, February, 2008.
Hirschmüller, H., and Scharstein, D., “Evaluation of Stereo Matching Costs on Images with Radiometric Differences”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, Issue 9, pp. 1582-1599, 2009.
Hirschmüller, H., and Bucher, T., “Evaluation of Digital Surface Models by Semi-Global Matching”, German Society of Photogrammetry, Remote Sensing and Geoinformation (DGPF), Vienna, Austria, 2010.
Hirschmüller, H., Buder, M., and Ernst, I., “Memory Efficient Semi-Global Matching”, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. I-3, pp. 371-376, 2012.
Kim, J., Kolmogorov, V., and Zabih, R., “Visual Correspondence Using Energy Minimization and Mutual Information”, IEEE International Conference on Computer Vision, Vol. 2, pp. 1033-1040, October, 2003.
Klaus, A., Sormann, M., and Karner, K., “Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure”, International Conference on Pattern Recognition, Vol. 3, pp. 15-18, 2006.
Kolmogorov, V., and Zabih, R., “Computing Visual Correspondence with Occlusions Using Graph Cuts”, IEEE International Conference on Computer Vision, Vol. 2, pp. 508-515, July, 2001.
Leberl, F., Irschara, A., Pock, T., Meixner, P., Gruber, M., Scholz, S., and Wiechert, A., “Point Clouds: Lidar versus 3D Vision”, Photogrammetric Engineering and Remote Sensing, Vol. 76, No. 10, pp. 1123-1134, 2010.
Lei, C., Selzer, J., and Yang, Y. -H., “Region-Tree Based Stereo Using Dynamic Programming Optimization”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 2378-2385, June, 2006.
Lowe, D. G., “Distinctive Image Features from Scale-Invariant Keypoints”, International Journal of Computer Vision, Vol. 60, Issue 2, pp. 91-110, November, 2004.
Mustaffar, M., and Mitchell, H. L., “Improving Area-Based Matching by Using Surface Gradients in the Pixel Co-ordinate Transformation”, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 56, No. 1, pp. 42-52, June, 2001.
ORIMA, “ORIMA User Manual”, ERDAS IMAGINE, 2013.
Pix4UAV, “Pix4UAV Manual”, Pix4UAV Version 2.2, 2013.
Rabe, C., Müller, T., Wedel, A., and Franke, U., “Dense, Robust, and Accurate Motion Field Estimation from Stereo Image Sequences in Real-Time”, Proc. European Conference on Computer Vision (ECCV), LNCS Vol. 6314, pp. 582-595, September, 2010.
Rothermel, M., Wenzel, K., Fritsch, D., and Haala, N., “SURE: Photogrammetric Surface Reconstruction from Imagery”, Proceedings Low-Cost 3D (LC3D) Workshop, Berlin, December, 2012.
Scharstein, D., and Szeliski, R., “A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms”, International Journal of Computer Vision, Vol. 47, Issue 1-3, pp. 7-42, April, 2002.
Snavely, N., Seitz, S. M., and Szeliski, R., “Photo Tourism: Exploring Photo Collections in 3D”, ACM Transactions on Graphics (TOG), Vol. 25, Issue 3, pp. 835-846, July, 2006.
Snavely, N., “Bundler v0.4 User’s Manual”, Retrieved from http://www.cs.cornell.edu/~snavely/bundler/bundler-v0.4-manual.html, 2010.
Strecha, C., Bronstein, A. M., Bronstein M. M., and Fua, P., “LDAHash: Improved Matching with Smaller Descriptors”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, Issue 1, pp. 66-78, 2012.
Sun, J., Li, Y., Kang, S. B., and Shum, H. -Y., “Symmetric Stereo Matching for Occlusion Handling”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 399-406, June, 2005.
SURE, “SURE-Manual”, 2014年1月31日下載自Institute for Photogrammetry web site: http://www.ifp.uni-stuttgart.de/publications/software/sure/index.en.ht
ml, 2014.
Tian, J., Reinartz, P., d’Angelo, P., and Ehlers, M., “Region-Based Automatic Building and Forest Change Detection on Cartosat-1 Stereo Imagery”, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 79, pp. 226-239, 2013.
Tola, E., Lepetit, V., and Fua, P., “A Fast Local Descriptor for Dense Matching”, IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, June, 2008.
Tola, E., Lepetit, V., and Fua, P., “DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, Issue 5, pp. 815-830, May, 2010.
Van Meerbergen, G., Vergauwen, M., Pollefeys, M., and Van Gool, L., “A Hierarchical Symmetric Stereo Algorithm Using Dynamic Programming”, International Journal of Computer Vision, Vol. 47, Issue 1-3, pp. 275-285, April-June, 2002.
Viola, P., and Wells, W. M., “Alignment by Maximization of Mutual Information”, International Journal of Computer Vision, vol. 24, Issue 2, pp. 137-154, 1997.
Weng, J., Cohen, P., and Herniou, M., “Camera Calibration with Distortion Models and Accuracy Evaluation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, Issue 10, pp. 965-980, 1992.
Wenzel, K., Abdel-Wahab, M., Cefalu, A., and Fritsch, D., “A Multi-Camera System for Efficient Point Cloud Recording in Close Range Applications”, In: LC3D workshop, pp. 37-46, Berlin, December 2011.
Wenzel, K., Rothermel, M., Haala, N., and Fritsch, D., “SURE-The ifp Software for Dense Image Matching”, 54th Photogrammetric Week, University of Stuttgart, Germany, pp. 59-70, September 9-13, 2013.
Wolf, P. R., and Dewitt, B. A., “Elements of photogrammetry : with applications in GIS (3rd ed.)”, Boston: McGraw-Hill, 2000.
Yang, Q., Wang, L., Yang, R., Stewénius, H., and Nistér, D., “Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation, and Occlusion Handling”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, Issue 3, pp. 492-504, March, 2009.
Yoon, K. -J., and Kweon, I. S., “Adaptive Support-Weight Approach for Correspondence Search”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, Issue 4, pp. 650-656, April, 2006.
Zabih, R., and Woodfill, J., “Non-Parametric Local Transforms for Computing Visual Correspondence”, Proceedings of the European Conference of Computer Vision, Stockholm, Sweden, pp. 151-158, May, 1994.
Zitnick, C. L., Kang, S. B., Uyttendaele, M., Winder, S., and Szeliski, R., “High-Quality Video View Interpolation Using a Layered Representation”, ACM Transactions on Graphics (TOG) - Proceedings of ACM Special Interest Group on Computer Graphics (SIGGRAPH), Vol. 23, Issue 3, pp. 600-608, August, 2004.