簡易檢索 / 詳目顯示

研究生: 鄭繼暐
Cheng, Chi-Wei
論文名稱: 利用原子級模擬法研究奈米顆粒之燒結初期行為
Study of Initial Stage of Nano-particle Sintering by Molecular Dynamics Simulations
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 110
中文關鍵詞: 分子動力學模擬二氧化鈦氧化鎂奈米燒結
外文關鍵詞: Molecular dynamic simulation, TiO2, MgO, Nanosintering
相關次數: 點閱:180下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗分別以氬原子模型和陶瓷模型兩部分來研究結構對燒結初期混合的影響,由氬原子 FCC 模型我們可以發現參雜奈米線和奈米球體的模型相較於單純由奈米球體組成可以得到比更好的混合結果,在經過 42奈秒之後配位數可達 6.5,大約是理論值 12 的一半;陶瓷模型以 TiO2 的Rutile 結構和 MgO 的岩鹽結構混合,我們發現氧化物的尺寸、維度以及結構穩定度對混合有很大的影響。當燒結起始物尺寸差異較大或有一方結構相對不穩定時,擴散的機制將由尺寸較小或不穩定的一方主導,雖然在模擬的結果無法觀察到 MgTiO3 的成相,但對於了解燒結初期的原子運動行為仍有很大的幫助。

    The research focuses on study initial stage of sintering of nanoparticles by Molecular Dynamics(MD) simulations. Lennard-Jones model were tested first. The results show that it is easier to have coalescence between nanowire to nanoparticle than nanoparticle to nanoparticle during sintering due to better atomic mixing. The coordination number is predicted to reach 6.5 after 42 ns of sintering, which is around half of theoretical value - 12. The simulation then carried out by simulating sintering of rutile-TiO2 and MgO nanoparticles by using Buckingham potential. The results demonstrate that size, dimensions and structural stability of oxide nanoparticles play an important role at initial stage of sintering. It is found that the diffusion is dominated by the oxide with smaller size or less stable structure. Thus simulation predicted that Ti atoms diffuse faster than Mg atoms when sintering between TiO2 nano-wire and MgO nanoparticle. On the other hand, Mg atoms diffuse faster than Ti atoms when sintering between TiO2 nanoparticle and MgO nanoparticle. Though, MgTiO3 phase was not found during such short simulation time, the outcomes provide insights to understand the atomic diffusion behavior at the initial stage of sintering.

    摘要 I ABSTRACT II 誌謝 III 總目錄 IV 表目錄 VIII 圖目錄 IX 第一章 前言 1 第二章 文獻回顧 3 2.1 微波介電材料 3 2.2 固相燒結理論 4 2.2.1 燒結基本原理 4 2.2.2 固態燒結模式 4 2.2.3 奈米陶瓷燒結行為 5 2.3 分子動力模擬燒結相關文獻 6 第三章 原子級模擬基礎理論 11 3.1 蒙地卡羅法與流程圖 11 3.2 分子動力學之基本假設與流程圖 12 3.3 勢能函數 13 3.3.1 Lennard-Jones勢能 13 3.3.2 Buckingham勢能 14 3.3.3 Direct summation法 14 3.4 週期性邊界(Periodic Boundary Condition) 16 3.5 初始條件設定 16 3.6 系綜 18 3.7 運動方程式 18 3.7.1 Verlet algorithms 18 3.7.2 Leap Frog algorithms 19 3.7.3 Velocity Verlet algorithms 20 3.7.4 溫度控制方法 20 3.8 截斷勢能 21 3.8.1 Verlet表列法 22 3.8.2 Cell Link表列法 22 3.8.3 Verlet表列法結合Cell Link表列法 23 第四章 物理模型與實驗設計 30 4.1 陶瓷結構介紹 30 4.1.1 TiO2結構 30 4.1.2 MgO結構 30 4.1.3 MgTiO3結構 31 4.2 物理模型介紹 31 4.2.1 氬原子簡化模型介紹 31 4.2.2 陶瓷模型介紹 32 4.2.3 陶瓷2nm小模型介紹 32 4.2.4 陶瓷沉積模型介紹 33 4.2.5 陶瓷2nm小模型加入MgTiO3核心 33 4.3 實驗設計與參數 34 4.3.1 氬原子固體混合 34 4.3.2 陶瓷固體混合 34 4.3.3 沉積 34 4.4 分析方法 35 4.4.1 MSD與擴散係數 35 4.4.2 迴轉半徑(gyration radius) 35 4.4.3 收縮率(shrinkage ratio) 36 4.4.4 Radial Distribution Function(RDF) 36 4.4.5 粗糙度(Roughness) 37 第五章 結果與討論 43 5.1 氬原子模型 43 5.2 陶瓷模型 45 5.2.1 TiO2、MgO、MgTiO3的勢能驗證 45 5.2.2 收縮率與迴轉半徑 47 5.2.3 MSD與總能量 49 5.2.4 RDF 50 5.3 陶瓷2nm模型 52 5.3.1 收縮率與相對迴轉半徑 52 5.3.2 MSD與總能量 53 5.3.3 RDF 54 5.4 沉積模型 55 5.4.1 覆蓋率 56 5.4.2 粗糙度 56 5.4.3 MSD與擴散係數 56 5.4.4 RDF 57 5.5 陶瓷2nm模型加入MgTiO3核心 58 5.5.1 收縮率與迴轉半徑 59 5.5.2 MSD與總能量 59 5.5.3 RDF 60 5.6 綜合討論 60 第六章 結論與未來展望 103 6.1 結論 103 6.2 未來展望 104 參考文獻 105

    [1] I. W. Chen and L. A. Xue, "Development of superplastic structural ceramics," Journal of the American Ceramic Society, vol. 73, pp. 2585-2609, Sep 1990.
    [2] K. A. Padmanabhan, "Mechanical properties of nanostructured materials," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 304, pp. 200-205, May 2001.
    [3] G. Boschloo and D. Fitzmaurice, "Spectroelectrochemical investigation of surface states in nanostructured TiO2 electrodes," Journal of Physical Chemistry B, vol. 103, pp. 2228-2231, Mar 1999.
    [4] J. R. Groza, "Nanosintering," Nanostructured Materials, vol. 12, pp. 987-992, Jul 1999.
    [5] M. J. Mayo, "Processing of nanocrystalline ceramics from ultrafine particles," International Materials Reviews, vol. 41, pp. 85-115, 1996.
    [6] M. Seipenbusch, S. Froeschke, A. P. Weber, and G. Kasper, "Investigations on the fracturing of nanoparticle agglomerates - first results," Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, vol. 216, pp. 219-225, 2002.
    [7] A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, and D. Suvorov, "High-Q microwave dielectric materials based on the spinel Mg2TiO4," Journal of the American Ceramic Society, vol. 89, pp. 3441-3445, Nov 2006.
    [8] A. Belous, O. Ovchar, D. Durylin, M. Valant, M. Macek-Krzmanc, and D. Suvorov, "Microwave composite dielectrics based on magnesium titanates," Journal of the European Ceramic Society, vol. 27, pp. 2963-2966, 2007.
    [9] C. L. Huang and S. S. Liu, "Characterization of extremely low loss dielectrics (Mg0.95Zn0.05)TiO3 at microwave frequency," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 283-285, Jan 2007.
    [10] C. L. Huang and S. S. Liu, "Low-Loss Microwave Dielectrics in the (Mg1-xZnx)(2)TiO4 Ceramics," Journal of the American Ceramic Society, vol. 91, pp. 3428-3430, Oct 2008.
    [11] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, "Microwave dielectric characteristics of ilmenite-type titanates with high Q-values " Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 33, pp. 5466-5470, Sep 1994.
    [12] I. Shindo, "Determination of the phase-diagram by the slow cooling float zone method - the system MgO-TiO2," Journal of Crystal Growth, vol. 50, pp. 839-851, 1980.
    [13] V. M. Ferreira, "Processing and dielectric properties of magnesium titanate ceramics," Ph.D. thesis, University of Aveiro, 1995.
    [14] V. M. Ferreira, J. L. Baptista, S. Kamba, and J. Petzelt, "Dielectric-spectroscopy of MgTiO3-based ceramics in the 10(9)-10(14) hz region," Journal of Materials Science, vol. 28, pp. 5894-5900, Nov 1993.
    [15] C. Vigreux, B. Deneuve, J. El Fallah, and J. M. Haussonne, "Effects of acceptor and donor additives on the properties of MgTiO3 ceramics sintered under reducing atmosphere," Journal of the European Ceramic Society, vol. 21, pp. 1681-1684, 2001.
    [16] H. Tanaka, N. Banba, S. Ari, and T. Nishikawa, "2 GHz one octave-band 90 degree hybrid coupler using coupled meander line optimized by 3-D FEM," in Microwave Symposium Digest, 1994., IEEE MTT-S International, 1994, pp. 903-906 vol.2.
    [17] W. W. Cho, K. Kakimoto, and H. Ohsato, "High-Q microwave dielectric SrTiO3-doped MgTiO3 materials with near-zero temperature coefficient of resonant frequency," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 43, pp. 6221-6224, Sep 2004.
    [18] T. Sato, R. Miyamoto, and A. Fukasawa, "Deviation of Dielectric Properties in Magnesium Titanate Ceramics," Japanese Journal of Applied Physics, vol. 20S4, p. 151.
    [19] M. F. Ashby, "First report on sintering diagrams," Acta Metallurgica, vol. 22, pp. 275-289, 1974.
    [20] R. L. Coble, "Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts," Journal of Applied Physics, vol. 32, pp. 793-799, 1961.
    [21] P.-L. Chen and I. W. Chen, "Sintering of Fine Oxide Powders: II, Sintering Mechanisms," Journal of the American Ceramic Society, vol. 80, pp. 637-645, 1997.
    [22] K. F. Peters, J. B. Cohen, and Y. W. Chung, "Melting of Pb nanocrystals," Physical Review B, vol. 57, pp. 13430-13438, Jun 1998.
    [23] Z. R. Dai, S. H. Sun, and Z. L. Wang, "Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals," Nano Letters, vol. 1, pp. 443-447, Aug 2001.
    [24] K. E. J. Lehtinen and M. R. Zachariah, "Effect of coalescence energy release on the temporal shape evolution of nanoparticles," Physical Review B, vol. 63, p. 205402, 2001.
    [25] V. Yadha and J. J. J. J. Helble, "Modeling the coalescence of heterogenous amorphous particles," Journal of Aerosol Science, vol. 35, pp. 665-681, 2004.
    [26] A. Kara and T. S. Rahman, "Vibrational dynamics and thermodynamics of surfaces and nanostructures," Surface Science Reports, vol. 56, pp. 159-187, Jan 2005.
    [27] H. L. Zhu and R. S. Averback, "Sintering of nano-particle powders: Simulations and experiments," Materials and Manufacturing Processes, vol. 11, pp. 905-923, 1996.
    [28] L. J. Lewis, P. Jensen, and J. L. Barrat, "Melting, freezing, and coalescence of gold nanoclusters," Physical Review B, vol. 56, pp. 2248-2257, Jul 1997.
    [29] Y. Qi, T. Cagin, W. L. Johnson, and W. A. Goddard, "Melting and crystallization in Ni nanoclusters: The mesoscale regime," Journal of Chemical Physics, vol. 115, pp. 385-394, Jul 2001.
    [30] S. J. Zhao, S. Q. Wang, Z. Q. Yang, and H. Q. Ye, "Coalescence of three silver nanoclusters: a molecular dynamics study," Journal of Physics-Condensed Matter, vol. 13, pp. 8061-8069, Sep 2001.
    [31] J. H. Shim, B. J. Lee, and Y. W. Cho, "Thermal stability of unsupported gold nanoparticle: a molecular dynamics study," Surface Science, vol. 512, pp. 262-268, Jul 2002.
    [32] G. Bilalbegovic, "Assemblies of gold icosahedra," Computational Materials Science, vol. 31, pp. 181-186, 2004.
    [33] F. Ding, A. Rosen, and K. Bolton, "Size dependence of the coalescence and melting of iron clusters: A molecular-dynamics study," Physical Review B, vol. 70, Aug 2004.
    [34] T. H. Fang, W. J. Chang, and J. W. Chiu, "Study on coalescent properties of ZnO nanoclusters using molecular dynamics simulation and experiment," Microelectronics Journal, vol. 37, pp. 722-727, Aug 2006.
    [35] T. Hawa and M. R. Zachariah, "Coalescence kinetics of unequal sized nanoparticles," Journal of Aerosol Science, vol. 37, pp. 1-15, Jan 2006.
    [36] F. J. Palacios and M. P. Iniguez, "Fusion and fragmentation of colliding metal clusters," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 196, pp. 253-260, Nov 2002.
    [37] M. M. Mariscal, S. A. Dassie, and E. P. M. Leiva, "Collision as a way of forming bimetallic nanoclusters of various structures and chemical compositions," Journal of Chemical Physics, vol. 123, Nov 2005.
    [38] H. Y. Kim, S. H. Lee, H. G. Kim, J. H. Ryu, and H. M. Lee, "Molecular dynamic simulation of coalescence between silver and palladium clusters," Materials Transactions, vol. 48, pp. 455-459, Mar 2007.
    [39] B. Henz, T. Hawa, and M. Zachariah, "Molecular dynamics simulation of the kinetic sintering of Ni and Al nanoparticles," Molecular Simulation, vol. 35, pp. 804-811, 2009.
    [40] G. J. Li, Q. Wang, T. Liu, K. Wang, and J. C. He, "Molecular Dynamics Simulation of the Melting and Coalescence in the Mixed Cu-Ni Nanoclusters," Journal of Cluster Science, vol. 21, pp. 45-55, Mar 2010.
    [41] H. Z. Zhang and J. F. Banfield, "Thermodynamic analysis of phase stability of nanocrystalline titania," Journal of Materials Chemistry, vol. 8, pp. 2073-2076, Sep 1998.
    [42] V. N. Koparde and P. T. Cummings, "Molecular dynamics simulation of titanium dioxide nanoparticle sintering," Journal of Physical Chemistry B, vol. 109, pp. 24280-24287, Dec 2005.
    [43] P. K. Naicker, P. T. Cummings, H. Z. Zhang, and J. F. Banfield, "Characterization of titanium dioxide nanoparticles using molecular dynamics simulations," Journal of Physical Chemistry B, vol. 109, pp. 15243-15249, Aug 2005.
    [44] D. V. Filyukov, E. N. Brodskaya, E. M. Piotrovskaya, and S. W. de Leeuw, "Molecular-dynamics simulation of nanoclusters of crystal modifications of titanium dioxide," Russian Journal of General Chemistry, vol. 77, pp. 10-16, Jan 2007.
    [45] V. N. Koparde and P. T. Cummings, "Phase transformations during sintering of titania nanoparticles," Acs Nano, vol. 2, pp. 1620-1624, Aug 2008.
    [46] C. F. Shih, W. M. Li, K. S. Tung, and W. D. Hsu, "Low-Loss Microwave Dielectric Material Based on Magnesium Titanate," Journal of the American Ceramic Society, vol. 93, pp. 2448-2451, Sep 2010.
    [47] N. Metropolis and S. Ulam, "The Monte Carlo Method," Journal of the American Statistical Association, vol. 44, pp. 335-341, 1949.
    [48] J. E. Jones, "On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 106, pp. 441-462, 1924.
    [49] D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, "Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r(-1) summation," Journal of Chemical Physics, vol. 110, pp. 8254-8282, May 1999.
    [50] D. J. Adams, "On the use of the ewald summation in computer-simulation," Journal of Chemical Physics, vol. 78, pp. 2585-2590, 1983.
    [51] P. Demontis, S. Spanu, and G. B. Suffritti, "Application of the Wolf method for the evaluation of Coulombic interactions to complex condensed matter systems: Aluminosilicates and water," The Journal of Chemical Physics, vol. 114, pp. 7980-7988, 2001.
    [52] L. Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules," Physical Review, vol. 159, p. 98, 1967.
    [53] L. Verlet, "Computer "Experiments" on Classical Fluids. II. Equilibrium Correlation Functions," Physical Review, vol. 165, p. 201, 1968.
    [54] R. P. Feynman, R. B. Leighton, and M. L. Sands, The Feynman lectures on physics. Reading, Mass.,: Addison-Wesley Pub. Co., 1963.
    [55] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of Chemical Physics, vol. 76, pp. 637-649, 1982.
    [56] H. J. C. Berendsen, J. P. M. Postma, W. F. Vangunsteren, A. Dinola, and J. R. Haak, "Molecular-dynamics with coupling to an external bath," Journal of Chemical Physics, vol. 81, pp. 3684-3690, 1984.
    [57] J. Rankin and L. A. Boatner, "Unstable Neck Formation during Initial-Stage Sintering," Journal of the American Ceramic Society, vol. 77, pp. 1987-1990, 1994.
    [58] 李偉民, 奈米金屬氧化物之合成及應用於低損耗微波介電陶瓷之研究. 國立成功大學電機工程學系博士學位論文, 2010.
    [59] E. Lindahl, B. Hess, and D. van der Spoel, "GROMACS 3.0: a package for molecular simulation and trajectory analysis," Journal of Molecular Modeling, vol. 7, pp. 306-317, 2001.
    [60] M. Matsui and M. Akaogi, "Molecular Dynamics Simulation of the Structural and Physical Properties of the Four Polymorphs of TiO2," Molecular Simulation, vol. 6, pp. 239 - 244, 1991.
    [61] M. Matsui, "Molecular dynamics study of the structural and thermodynamic properties of MgO crystal with quantum correction," The Journal of Chemical Physics, vol. 91, pp. 489-494, 1989.
    [62] A. L. Linsebigler, G. Lu, and J. T. Yates, "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results," Chemical Reviews, vol. 95, pp. 735-758, 1995.
    [63] 陳恭, The structural, magnetic and electrical properties of Fe-Mg-O Thin Films on MgO(100) or STO(100) substrates 國立中正大學物理研究所碩士學位論文, 2005.
    [64] 林東杰, Mg0.95Co0.05TiO3 介電陶瓷材料及微波應用之研究 國立成功大學電機工程研究所碩士學位論文, 2007.
    [65] W. Humphrey, A. Dalke, and K. Schulten, "VMD: Visual molecular dynamics," Journal of Molecular Graphics, vol. 14, pp. 33-38, 1996.
    [66] A. De Vita, M. J. Gillan, J. S. Lin, M. C. Payne, I. Scarontich, and L. J. Clarke, "Defect energetics in MgO treated by first-principles methods," Physical Review B, vol. 46, p. 12964, 1992.

    下載圖示 校內:2015-08-10公開
    校外:2015-08-10公開
    QR CODE