簡易檢索 / 詳目顯示

研究生: 連晟閔
Lian, Chen-Min
論文名稱: AHP應用於複雜議題學習活動分析-以新冠疫情類包機檢疫流程為例
Using AHP to Analyze Learning Activities of Wicked Problems-Taking the Quarantine Procedures of Charter Flight During the COVID-19 Pandemic as an Example
指導教授: 游濟華
Yu, Chi-Hua
共同指導教授: 李孟學
Li, Meng-Hsueh
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 56
中文關鍵詞: 層級分析法 (Analytic hierarchy process)問題導向式學習學習活動工程教育棘手問題 (Wicked problem)
外文關鍵詞: Analytic hierarchy process, Problem based learning, Learning activities, Engineering education, Wicked problem
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2020年台灣因 Covid-19 大流行而封鎖了邊境。台灣為了保護海外國人的權益,開展了類包機政策,此政策為了接應海外國人回國,政府透過類包機的方式,接送國人從重災區陸續歸國。但當類包機成功降落台灣機場後,一場挑戰才悄然的到來,當包機乘客將落後,由於機場空間有限、以及為了減少乘客接觸時間,避免增加感染機率,因此如何有效處理200多人的檢疫流程,對於當時機場工作人員、醫護人員以及維安人員,是一件棘手的挑戰。透過不斷的與合作夥伴討論以及交換意見,他們根據現場的狀況,以及經驗,迭代出一套能讓旅客安心,且符合法規的檢疫流程。這類問題的難處在於,它不能單單透過專一領域而解決,必須協同各領域的專家,互相交換意見,因而產生出一套流程設計的解決辦法。
    2020年成功大學開設了一門問題導向式的課程模組,通過引入研究機場現場 Covid-19 檢疫過程的困境為主題。然而學生對於這類型複雜的議題是陌生的,且對於機場檢疫流程的相關細節,也是未知的,為了使學生能夠學習如何設計一套符合規定的包機檢疫流程,本研究設計了六項學習活動,讓學生們能反覆利用各項學習活動,解決流程設計中所遇到的問題。六項學習活動分別為「單向授課」、「白板討論」、「Lego模型」、「基因演算法模型」、「Unity模型」以及「擬真演練」。
    儘管有了六項學習活動的協助,學生們能反覆利用各項學習活動,來解決相關流程設計遇到的問題,但何種學習活動,能最大化協助學生解決流程設計中特定問題,則為本研究所關心的議題。因此本研究利用層級分析法,分析了不同背景的學生,對於六項學習活動解決六項檢疫流程設計的問題中,所佔的權重比例。因此,根據分析結果,將各項權重依序排序,整理出一套可應用於往後課程設計中的建議。根據層級分析結果,以及經由學生作業回饋比較後,本研究找出三項學習活動,分別為單向授課、白板討論以及Lego模型,這三項是學生們認為對設計流程幫助最多的學習活動工具,因此本研究建議日後若有這類課程設計,專業知識的建構是不可或缺的、透過白板的小組討論,可以有效的分析流程細節設置,Lego模型則提供了一套快速建置三維草模的學習活動工具。
    關鍵字:層級分析法(Analytic hierarchy process)、問題導向式學習、學習活動、工程教育、棘手問題(Wicked problem)。

    In 2020, due to the Covid-19 pandemic, Taiwan closed its borders and implemented a quasi-charter policy. To accommodate Taiwanese returning to Taiwan, the government used quasi-charter flights to transport Taiwanese from the hardest-hit areas back to Taiwan one after another. Since such processes involve factors such as space, time, and cross-contamination, it is a brain-breaker for airport staff how to design an appropriate process.
    To teach students how to solve this tough problem, we have a problem-oriented course and designed different learning activities to assist students in the design of the quarantine process. But which kind of learning activities are useful for students to solve problems, we used the analytic hierarchy process to analyze students' perceptions of different learning activities?
    Finally, through the analysis of the results, this study identified three learning activities, namely one-way lecture, whiteboard discussion, and Lego model. These three learning activities are the most helpful learning activity tools for the design process. With this type of course design, the construction of professional knowledge is indispensable. The group discussion through the whiteboard can effectively analyze the detailed setting of the process. The Lego model provides a set of learning activity tools for quickly building a 3D draft model.
    Keywords: Analytic hierarchy process, Problem based learning, Learning activities, Engineering education, Wicked problem.

    摘要I 目錄VI 表目錄VIII 圖目錄IX 第一章 緒論1 1.1 前言1 1.2 研究動機與目的2 1.3 研究範圍2 1.3.1研究對象2 1.3.2學習活動研究2 1.3.3研究變項3 1.3.4上課時程表3 第二章 文獻回顧4 2.1 問題導向式學習相關研究4 2.2 設計思考相關研究5 2.2.1設計思考的定義5 2.2.2學習活動設計如何解決棘手的問題7 2.3 AHP應用於工程教育相關研究8 第三章 研究設計9 3.1 研究架構10 3.2 名詞釋義10 3.3 資料處理與分析14 3.3.1層級分析法14 3.3.2 獨立樣本t檢定14 3.3.3 獨立樣本t檢定14 3.3.4資料處理流程15 第四章 研究結果16 4.1 學生背景資料分析16 4.2 不同背景變項的差異性分析18 4.2.1 課程經驗的差異性分析18 4.2.2學院背景的差異性分析22 4.3 層級分析結果與討論25 4.3.1 問卷一致性檢定25 4.3.2 權重計算過程26 4.3.3 課程經驗的層級分析26 4.3.4 學院背景的層級分析33 4.4 綜合評述41 第五章 結論與未來研究方向42 5.1 研究結論42 5.1.1不同背景變項的差異性分析42 5.1.2在定義各類流程問題中42 5.1.3在優化流程細節設計中43 5.2 綜合評述43 5.3 未來研究建議43 參考文獻44 附錄47

    [1] N. Kandel, S. Chungong, A. Omaar, and J. Xing, “Health security capacities in the context of COVID-19 outbreak: an analysis of International Health Regulations annual report data from 182 countries,” Lancet, vol. 395, no. 10229, pp. 1047–1053, Mar. 2020, doi: 10.1016/S0140-6736(20)30553-5.
    [2] S. Tuchen, M. Arora, and L. Blessing, “Airport user experience unpacked: Conceptualizing its potential in the face of COVID-19,” J. Air Transp. Manag., vol. 89, p. 101919, Oct. 2020, doi: 10.1016/J.JAIRTRAMAN.2020.101919.
    [3] M. L. J. Gilbertson, M. E. Craft, and T. M. Potter, “PLANETARY GRAND CHALLENGES: A CALL FOR INTERDISCIPLINARY PARTNERSHIPS,” Interdiscip. J. Partnersh. Stud., vol. 6, no. 1, p. 1, Apr. 2019, doi: 10.24926/IJPS.V6I1.1976.
    [4] S. P. Dow, A. Glassco, J. Kass, M. Schwarz, D. L. Schwartz, and S. R. Klemmer, “Parallel prototyping leads to better design results, more divergence, and increased self-efficacy,” ACM Trans. Comput. Interact., vol. 17, no. 4, Dec. 2010, doi: 10.1145/1879831.1879836.
    [5] H. S. Barrows, “Problem-based learning in medicine and beyond: A brief overview,” New Dir. Teach. Learn., vol. 1996, no. 68, pp. 3–12, Dec. 1996, doi: 10.1002/TL.37219966804.
    [6] J. Dammers, J. Spencer, and M. Thomas, “Using real patients in problem-based learning: students’ comments on the value of using real, as opposed to paper cases, in a problem-based learning module in general practice,” Med. Educ., vol. 35, no. 1, pp. 27–34, Jan. 2001, doi: 10.1111/J.1365-2923.2001.00841.X.
    [7] G. D. Hendry, G. Ryan, and J. Harris, “Group problems in problem-based learning,” https://doi.org/10.1080/0142159031000137427, vol. 25, no. 6, pp. 609–616, Nov. 2009, doi: 10.1080/0142159031000137427.
    [8] C. E. Hmelo-Silver, “Problem-Based Learning: What and How Do Students Learn?,” Educ. Psychol. Rev. 2004 163, vol. 16, no. 3, pp. 235–266, Sep. 2004, doi: 10.1023/B:EDPR.0000034022.16470.F3.
    [9] J. A. R. Arts, W. H. Gijselaers, and M. S. R. Segers, “Cognitive effects of an authentic computer-supported, problem-based learning environment,” Instr. Sci. 2002 306, vol. 30, no. 6, pp. 465–495, 2002, doi: 10.1023/A:1020532128625.
    [10] G. Maudsley, “Making sense of trying not to teach: An interview study of tutors’ ideas of problem-based learning,” Acad. Med., vol. 77, no. 2, pp. 162–172, 2002, doi: 10.1097/00001888-200202000-00017.
    [11] D. Stentoft, “From saying to doing interdisciplinary learning: Is problem-based learning the answer?:,” http://dx.doi.org/10.1177/1469787417693510, vol. 18, no. 1, pp. 51–61, Feb. 2017, doi: 10.1177/1469787417693510.
    [12] G. Domik and G. Fischer, “Coping with Complex Real-World Problems: Strategies for Developing the Competency of Transdisciplinary Collaboration,” IFIP Adv. Inf. Commun. Technol., vol. 324, pp. 90–101, 2010, doi: 10.1007/978-3-642-15378-5_9.
    [13] M. Brassler and J. Dettmers, “How to Enhance Interdisciplinary Competence—Interdisciplinary Problem-Based Learning versus Interdisciplinary Project-Based Learning,” Interdiscip. J. Probl. Learn., vol. 11, no. 2, p. 12, Jul. 2017, doi: 10.7771/1541-5015.1686.
    [14] M. Lewrick, P. Link, L. J. Leifer, and N. Langensand, “The design thinking playbook : mindful digital transformation of teams, products, services, businesses and ecosystems,” p. 352.
    [15] J. P. Guilford, “The structure of intellect,” Psychol. Bull., vol. 53, no. 4, pp. 267–293, Jul. 1956, doi: 10.1037/H0040755.
    [16] J. P. Guilford, “Intelligence Has Three Facets,” Science (80-. )., vol. 160, no. 3828, pp. 615–620, May 1968, doi: 10.1126/SCIENCE.160.3828.615.
    [17] H. W. J. Rittel and M. M. Webber, “Dilemmas in a general theory of planning,” Policy Sci. 1973 42, vol. 4, no. 2, pp. 155–169, Jun. 1973, doi: 10.1007/BF01405730.
    [18] R. Buchanan, “Wicked Problems in Design Thinking,” Des. Issues, vol. 8, no. 2, p. 5, 1992, doi: 10.2307/1511637.
    [19] B. Jobst and C. Meinel, “How Prototyping Helps to Solve Wicked Problems,” Des. Think. Res. Build. Innov. Eco-Systems, pp. 105–113, Jan. 2014, doi: 10.1007/978-3-319-01303-9_8.
    [20] E. Gerber and M. Carroll, “The psychological experience of prototyping,” Des. Stud., vol. 33, no. 1, pp. 64–84, Jan. 2012, doi: 10.1016/J.DESTUD.2011.06.005.
    [21] M. A. Badri and M. H. Abdulla, “Awards of excellence in institutions of higher education: An AHP approach,” Int. J. Educ. Manag., vol. 18, no. 4, pp. 224–242, 2004, doi: 10.1108/09513540410538813/FULL/PDF.
    [22] R. Dorado, A. Gómez-Moreno, E. Torres-Jiménez, and E. López-Alba, “An AHP application to select software for engineering education,” Comput. Appl. Eng. Educ., vol. 22, no. 2, pp. 200–208, Jun. 2014, doi: 10.1002/CAE.20546.
    [23] P. R. Drake, “Using the analytic hierarchy process in engineering education,” Int. J. Eng. Educ., vol. 14, no. 3, pp. 191–196, 1998.
    [24] S. Mirjalili, “Genetic Algorithm,” Stud. Comput. Intell., vol. 780, pp. 43–55, 2019, doi: 10.1007/978-3-319-93025-1_4.
    [25] W. Wright, D. Schroh, P. Proulx, A. Skaburskis, and B. Cort, “The Sandbox for analysis,” pp. 801–810, Apr. 2006, doi: 10.1145/1124772.1124890.

    無法下載圖示 校內:2027-01-24公開
    校外:2027-01-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE