| 研究生: |
連志偉 Lien, Chih-Wei |
|---|---|
| 論文名稱: |
非常態分配下前置管制圖之探討與研究 A Study of Pre-Control Charts under Non-normal Distributions |
| 指導教授: |
潘浙楠
Pan, Jeh-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 前置管制圖 、中位數二分法 、眾數二分法 、Box-Cox常態轉換法 、Bootstrap方法 |
| 外文關鍵詞: | Bisection method using mode, Bisection method using median, Pre-control chart, Box-Cox transformation, Bootstrap method |
| 相關次數: | 點閱:107 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
統計製程管制(Statistical Process Control,簡稱SPC)是監控製程品質特性的重要方法。透過管制圖(Control Charts)的監控,吾人能夠迅速地偵測出非機遇原因何時發生或是製程何時改變,再予以即時的修正即可防止不良品之產生,並減少不必要的品質損失。傳統的前置管制圖係建立在常態分配之基本假設之下,將規格寬度均分為四等分界定其管制區域,但當製程為非常態分配時,此設定方法之適用性則有待商榷。
本研究乃針對非常態分配前置管制界限(警戒線)之設定準則提出二種新的設定方法,即中位數二分法及眾數二分法,並探討非常態分配中常見之伽碼分配、韋伯分配、指數分配及對數常態分配在不同之偏態係數下,與傳統之規格寬度四分法間之差異,至於前置管制圖在不同設定方式下判異準則之有效性,吾人則利用型I誤差、平均串長度(ARL)配合製程能力指標進行評估。此外,本研究尚利用Box-Cox常態轉換法配合Bootstrap方法,針對非常態分配之製程進行轉換,結果發現上述四種非常態分配之製程經轉換後,因其誤警率過高,故常態分配下之設定準則均不適用於資料轉換後之製程監控。
最後,吾人針對當製程為非常態分配時,前置管制界限(警戒線)設定準則之選取方式依比較分析之結果彙製成表以供業界參考使用。
Good quality of products is the key factor of business success. With the advent of high-technology era, manufacturing process becomes more sophisticated and the normal assumption is not always valid. Due to its simplicity and easy-to-use, the pre-control chart has been regarded as a very popular tool for process control, especially in the machine shop during the 1980s when S.P.C. becomes fashionable again. However, the simple rules of the pre-control chart are no longer suitable for the sophisticated manufacturing process when non-normal quality characteristics involved.
Therefore, the purpose of this research is to investigate and develop the appropriate rules for pre-control charts under non-normal distribution. We propose two methods: bisection method using median, and bisection method using mode for setting up the pre-control chart under non-normal distribution such as: Gamma, Weibull, and Lognormal distributions. Similar approaches then will be extended to compare the performance of pre-control charts under different setting-up methods. Type I error and Average Run Length (ARL) are used as criteria to evaluate their performance in conjunction with the process capability indices. Moreover, the Box-Cox transformation and Bootstrap methods are also used to convert the non-normal data to normal data and then apply the traditional setting-up method to pre-control charts. The results show that the above method is not adequate due to the high false alarm rate.
Finally, a summary table of decision rules will be established based on the results of computer simulations and comparative studies for both normal and non-normal pre-control charts. Hopefully, it can provide a useful reference for the industries.
1.Bhote, K. R., Strategic Supply Management, American Management Association, New York, NY. (1988).
2.Bhote, K. R., “World Class Quality: Design of Experiments Made Easier, More Cost Effective Than SPC,”American Management Association. (1988).
3.Bhote, K. R., World Class Quality, American Management Association, New York, NY. (1991).
4.Box, G. E. P., and Cox, D. R., “An Analysis of Transformations (with discussion),” Journal of the Royal Statistical Society, Series B, Vol. 26, pp.211-246 (1964).
5.Clements, John A., “Process Capability Calculations for Non-normal Distribution, ” Quality Progress, Vol. 22, No. 9, pp. 95-100 (1989).
6.Efron, B., “Bootstrap Methods: Another Look at the Jackknife,” The Annals of Statistics, Vol. 7, pp. 1-26 (1979).
7.Ermer, D. C. and Roepke, J. R., “An Analytical Analysis of Pre-control,” ASQC Quality Congress transactions. American Society for Quality Control, Milwaukee, WI, New York, pp. 522-525 (1991).
8.Juran, J. M., Jurans Quality Control Handbook 3rd, McGraw-Hill, New York. (1974).
9.Ledolter, Johannes and Arthur Swersey, “An Evaluation of Pre-control,”Journal of Quality Technology, Vol.29, No.2, pp. 163-171 (1997).
10.Logothetis, N., “The Theory of Pre-Control: A Serious Method or a Colourful Naivity?” International Journal of Total Quality Management, Vol. 1, pp. 207-220 (1990).
11.Mackertich, N. A., “Precontrol versus Control Charting: A Critical Comparison,” (with discussion by Dorian Shainin) Quality Engineering, Vol. 2, pp. 253-268 (1990).
12.Shainin, D., “Better than Good Old and Charts Asked by Vendees,” ASQC Quality Congress Transactions (1984).
13.Traver, R. W., “Pre-Control: A Good Alternative to and Charts,” Quality Progress, Vol. 17, pp. 11-14 (1985).
14.潘浙楠、吳淑玲,”非常態資料製程能力指標之研究”,品質學報,第二期,第二卷,第77至95頁(1996)。
15.潘浙楠、李文瑞,「品質管理」,華泰書局(2002)。