| 研究生: |
張矩嘉 Chang, Chu-Chia |
|---|---|
| 論文名稱: |
鈥(Ho2O3)對鈦酸鋇電性以及介電的影響 The effect of Ho dopant on the electrical and dielectric properties of BaTiO3 |
| 指導教授: |
方滄澤
Fang, T. T. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 正溫度係數 、氧化鈥 、鈦酸鋇 、積層陶瓷電容 |
| 外文關鍵詞: | Positive temperature coefficient, Ho2O3, BaTiO3, Mulitilayer ceramic capacitors |
| 相關次數: | 點閱:119 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要討論氧化鈥(Ho2O3)對鈦酸鋇電性以及介電的影響。共分成兩部分:第一部分主要添加微量x%的氧化鈥(x=0.05, 0.1, 0.2,0.3, 0.4,0.6,0.8,1.0)於鈦酸鋇中,探討在空氣與氧氣兩種不同氧分壓的氣氛下,室溫的電阻值變化以及利用SEM觀察其微結構,得到晶粒大小變化與氧化鈥添加量及電阻變化的關係。可以發現隨著添加量的增加,電阻的變化可以分成兩個階段。在第一個階段中(x<0.2),電阻隨著添加量的增加而降低,直到x=0.2時為最低。而第二個階段中(x>0.2),電阻隨著添加量的增加而增加,因此,可以得到一個在x=0.2時的轉折點。
在本研究的第二個部分中,主要探討在不同氣氛下燒結的結構與電性性質之變化。以鈦酸鋇粉末為主,均添加1% Ho2O3與y %BaCO3(y=0, 0.5, 1, 1.5, 2)。並分別在空氣中與還原氣氛(5%H2-95%N2)下燒結。從電阻的變化,可以得知隨著添加Ba2+離子的增加去改變鈦酸鋇的Ba/Ti 比,影響H03+離子所佔據的位置,使得H03+離子從起初
的Ba位置上,開始部份轉移佔據到Ti位置上,其電性也從半導化變成絕緣。並以X光繞射分析來觀察其結構,由原來的正方晶(tetragonal)轉變為立方晶(cubic)以及晶格常數的變化;其介電常數也隨著Ba2+離子添加量的增加而降低,居禮溫度(Tc)也隨之往低溫偏移。
The research work on barium titanate mainly discussed the effect of doped with Ho2O3 on its electricity and dielectric. It will be divided into
two parts: first, probing into the change of resistance at room temperature, the SEM analysis, grain size, and the amount of dopant by doping with a trace of x% Ho2O3 (x=0.05, 0.1, 0.2, 0.3, 0.4,0.6,0.8,1.0)fired under different oxygen partial pressures. From increasing of dopant the
variation of resistance can be separated into two steps. The resistance decreased with adding the dopant until x=0.2 in the first step(x<0.2). On
the other hand, it increased when x>0.2 for the second step. There is a turning point on x=0.2 hence. Second, structural changes and electricity
of barium titanate(BT)ceramics doped with 1﹪Ho2O3 and y﹪BaCO3(y=0, 0.5, 1, 1.5, 2)are discussed in this investigation. Sintering of BT
is proceeded both in air and reducing atmosphere. Variations in resistance indicates that, with the increasing the amount of Ba2+ ions, Ho3+ ions are
removed from A sites and then occupy the B sites, which result in a switch from semiconducting into insulating behavior. And the original tetragonal structure transforms into cubic structure, which in turn lowers the dielectric constant.
第六章參考文獻
1. Herbert, J. M.,“High permittivity ceramics sintered in hydrogen”.
Trans. Br. Ceram. Soc., 62(8), 645(1963).
2. Zhang, Xm, W, Han, Y. H., Lal, M. and Smyth, D. M.,“ Defect
chemistry of BaTiO3 with additions of CaTiO3”. J. Am. Ceram. Soc.,
70, pp.100-103,(1987).
3. Sakabe, Y.,“Dielectric materials for base-meatl multiplayer ceramic
capacitors”. Ceram. Bull., 1987, 66, 1338-1341.
4. Hennings, D. F. K. and Schreinemacher, H.,“Ca acceptors in
dielectric ceramics sintered in reducing atmosphere”. J. Eur.Ceram.
Soc., 1995, 15, 795–800.
5. Waser, R.,“Electrochemical boundary conditions for resistance
degradation of doped alkaline-earth titanates”. J. Am. Ceram. Soc.,
1989, 72(12), 2234.
6. Lee, W. S., Groen, W. A., Schreinemacher, H. and Hennings, D.F. K.,
“Dysprosium doped dielectric material for sintering in reducing
atmosphere”. J. Electroceramics, 2000, 5(1).
7. J. Daniels, K. H. Haerdtl, and R. Wernicke, “The PTC Effect of
Barium Titanate ”Philips Tech Rev., 38(3), 73(1978/79)
8. O. Saburi, “Properties of Semiconductive Barium Titanate”J. Phys.
Soc. Jpn., 14, 1159(1959).
9. N. H. Chan and D. M. Smyth,“Defect Chemistry of Donor-Doped
BaTiO3”, J. Am. Ceram. Soc.,67, 285(1984).
10. G. H. Jonker, Solid State Electron, 7, 895-903, 1964.
11. N. G. Eror and D. M. Smyth, pp. 62~74 in The Chemistry of
Extended Defects in Non-Metallic solid, Edited by L. Eyring and M.
O’Keefe, North-Holland, Amsterdam, 1970.
12. J. Daniels and K. H. Hardtl, D. Hennings and R. Wernicke, Philips
Res. Rept., 31, 487-59 (1976).
13. K. S. Mazdiyasni and L. M. Lawn, J. Am. Ceram. Soc., 54, 539~43
(1971).
14. L. A. Xue, Y. Chan and R. J. Brook, J. Mater. Sci., 7, 1163~65
(1988).
15. C. J. Ting, C. J. Peng, H. Y. Lu and S. T. Wu, J. Am. Ceram. Soc.,
73
73(2), pp. 329~34 (1990).
16. Seshu. B.Desu and David A. Payne,“Interfacial Segregation in
Perovskites: , Microstructure and Electrical Porperties”, Ⅲ
J.Am.Ceram.Soc., 73(11), pp. 3407-15(1990)
17. S. Shirasaki, M. Tsukioka, H. Yamamura, and H. Oshima, Solid State
Communications, 19, pp. 721~24 (1976)
18. S. Shirasaki, H. Yamamura, H. Haneda, K. Kakgawa, and J. Moori, J.
Chem. Phys., 73, pp. 4640~45 (1980).
19. S. Shirasaki, H. Handea, K. Arai, and M. Fujimoto, J. Mater. Sci., 22,
pp.4439~45 (1987).
20. 邱碧秀,電子陶瓷材料(1989).
21. J. Nowotny, Electronic Ceramic Materials(1991).
22. M. Tanaka. J. Phys. Soc. Jap. 19(1964)954~970.
23. G. Arlt et al., J. Appl. Phys., 51(9)4056~4960 (1980).
24. T. Mitsui er al.,“Introduction to Physics of Ferroelectrics”, Gordon
and Breach, New York, 1976.
25. F. Jona et al., Ferroelectrics, 49(1983)3~14.
26. D. E. Rase and R. Roy, “Phase Equilibria in the System BaO-TiO2”,
J. Am. Ceram. Soc., 38(3), pp. 102-113 (1955).
27. R. K. Sharma, N. H. Chan, and D. M. Smyth, “Solubility of TiO2 in
BaTiO3”, J. Am. Ceram. Soc., 64(8), pp. 448-451 (1981).
28. Y. H. Hu, M. P. Harmer, and D. M. Smyth, “Solubility of BaO in
BaTiO3”, J. Am. Ceram. Soc., 68(7), pp. 372-376 (1985).
29. K. W. Kirby and B. A. Wechsler, “Phase Relations in the Barium
Titanate-Titanium Oxide System”, J. Am. Ceram. Soc., 74(8), pp.
1841-1847 (1991).
30. A. K. Maurice and R. C. Buchanan, “Preparation and Stoichiometry
Effects on Microstructure and Properties of High Purity BaTiO3”,
Ferroelectrics, 74, pp. 61-75 (1987).
31. T. Yamamoto, “Influence of small Ba/Ti Non-Stoichiometry on Grain
Growth Behavior in Barium Titanate”, Bri. Ceram. Trans., 94(5), pp.
196-200 (1995).
32. M.P.Harmer, Y.H.Hu, M.Lal, and D.M.Smyth, “The Effects of
74
Composition and Microstructure on Electrical Degradation in
BaTiO3”, Ferroelectrics., 49, pp.71-74 (1983)
33. N. H. Chan, R. K. Sharma, and D. M. Smyth, “Nonstoichiometry in
Undoped BaTiO3”, J. Am. Ceram. Soc., 64(9), pp. 56-562 (1981).
34. H. U. Anderson, “Influence of Ba/Ti Ratio on the Initial Sintering
Kinetics of BaTiO3”, J. Am. Ceram. Soc., 56(11), pp. 605-606
(1973).
35. Jung-Kun Lee , Kug-Sun Hong and Jin-Wook Jang,“Role of Ba/Ti
Ratios in the Dielectric Properties of BaTiO3 Ceramics”, J. Am.
Ceram. Soc., 84(9), pp. 2001-2116 (2001).
36. J. F. Murray, “Some Causes and Effects of Phase Other Than
Tetragonal BaTiO3 in Barium Titanate”, Am. Ceram. Soc. Bull.,
37(11), pp. 476-479 (1958).
37. A. Beauger, J. C. Mutin, and J. C. Niepce, “Role and Behavior of
Orthotitanate Ba2TiO4 during the Processing of BaTiO3 Based
Ferroelectric Ceramics”, J. Mater. Sci., 19, pp. 195-201 (1984).
38. B. Jaffe,W. R. Coot et al., Piezoelectric Ceramics, p91-99,Academic
Press, London and New York,1971.
39. Z. Q. Zhuang, M. P. Harmer, D. M. Smyth and R. E. Newnham, “The
Effect of Octahetrally Coordinated Calcium on the Ferroelectric
Transition of BaTiO3”, Mat. Res. Bull., 22, pp.1329-1335, 1987.
40. N. G. Eror and D. M. Smyth, pp.62-74 in the Chemistry of Extended
Defects in Nonmetallic Solid, Edited by L. Eyring and M. O’Keefe,
North-Holland, Amsterdam, 1970.
41. K. S. Mazdiyasni and L. M. lawn, J. Am. Ceram. Soc., 54, 539-43
(1971).
42. L. A. Xue, Y. Chen and R. J. Brook, J. Mater. Sci., 7, 1163-65 (1988).
43. C. J. Ting, C. J. Peng, H. Y. Lu and S. T. Wu, J. Am. Ceram. Soc.,
73(2) 329-34 (1990).
44. S. B. Desu and E. C. Subbarao, “Mn-Doped BaTiO3”, Grain
Boundary Phenmena in Electronic Ceramics, Edited by Lionel M.
levinson, 1981, pp. 189-206
45. W. D. Kingery, H. K. Bown and D. R. Uhlmann (Eds.), “Introduction
to Ceramics, 2nd Ed., p61, p461, p489, p498, p900, John,
Wiley&Sons, Singapore, 1991.
75
46. M. F. Yan, R. M. Cannon, and H.K. Bowen, in Ceramic
Microstructures’ 76, pp276, 1976.
47. R. Wernicke, Phys. State. Sol.(a), 47, 139, 1978.
48. L. A. Xue, Y. Chen, R. J. Brook, J. Mat. Sci. Letters, 7, 1163, 1988.
49. M. F. Yan, Mat.Sci.Eng.,48, 53, 1981.
50. J. B. Macchesney, P. K. Gallagher and T. V. Dimarcello, J. Am. Ceram.
Soc., 46, 197, 1963.
51. D. F. K. Henning et al, “Temperature-Stable Dielectrics Materials in
the System BaTiO3-Nb2O5-Co3O4”,J. Europ. Ceram. Soc.,14,
462-471 (1994).
52. 丁慶瑞,精密陶瓷元件製作與應用,工研院材料所,1989.
53. G. V. Lewis and C. R. A. Catlow, Radiat. Eff. 73, 307, (1983)
54. N. H. Chan, and D. M. Smyth, J. Am. Ceram. Soc., 67, 285, (1984).
55. W. Heywang,“Barium Titanate as a Semiconductor with Blocking
Layerw“, Solid State Electr., 3(1), 51(1961).
56. O. I V’yunov and A. G. Belous, “ Phase Transformation in the
Synthesis of Ba(Ti1-xMx)O3-based PTCR Ceramic ”, J. Eur. Ceram.
Soc., 19, pp. 935-938(1999).
57. W. Heywang,“Resistivity Anomaly in Doped Barium Titanate”, J.
Am. Ceram. Soc., 47(10), pp. 484~90 (1964).
58. W. Heywang,“Semiconducting Barium Titanate”, J. Mater. Sci., 6, pp.
1214~26 (1971).
59. N. G. Eror and D. M. Smyth, pp. 62-74 in the Chemistry of Extended
Defects in Nonmetallic Solid, Edited by L. Eyring and M. O’Keefe,
North-Holland, Amsterdam, 1970.
60. Seok-Hyun Yoon and Hwan Kim, “Effect of donor(Nb) concentration
on the bulk electrical resistivity of Nb-doped barium titanate”, J.
Appl. Phys., 92(2), pp. 1093-1047(2002).
61. H. M. Al-Allak, G. J. Russell and J. Woods, “The effect of annealing
on the characteristics of semiconducting BaTiO3 positive temperature
coefficient of resistance devies”, J. Phys. D: Appl. Phys., 20,
pp.1645-1651(1987).
62. H. M. Al-Allak, A. W. Brinkman, G. J. Russell, and J. Woods, J. Appl.
76
Phys., 63, 4530, (1988).
63. (12)J. Daniels and K. H. Hardtl, Philips Res. Rept., 31,
487-59(1976)
64. K. S. Mazdiyasni and L. M. lawn, J. Am. Ceram. Soc., 54,
539-43(1971)
65. L. A. Xue, Y. Chen and R. J. Brood, J. Mater. Sci., 7, 1163-65(1988)
66. C. J. Ting, C. J. Peng, H. Y. Lu. And S. T. Wu, J. Am. Ceram. Soc.,
73(2)329-34(1990)
67. (44)S. B. Desu and E. C. Subbarao, “Mn-Doped BaTiO3”, Grain
Boundary Phenmena in Electronic Ceramics, Edited by Lionel M.
levinson, 1981, pp. 189-206
校內:不公開