簡易檢索 / 詳目顯示

研究生: 張矩嘉
Chang, Chu-Chia
論文名稱: 鈥(Ho2O3)對鈦酸鋇電性以及介電的影響
The effect of Ho dopant on the electrical and dielectric properties of BaTiO3
指導教授: 方滄澤
Fang, T. T.
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 76
中文關鍵詞: 正溫度係數氧化鈥鈦酸鋇積層陶瓷電容
外文關鍵詞: Positive temperature coefficient, Ho2O3, BaTiO3, Mulitilayer ceramic capacitors
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要討論氧化鈥(Ho2O3)對鈦酸鋇電性以及介電的影響。共分成兩部分:第一部分主要添加微量x%的氧化鈥(x=0.05, 0.1, 0.2,0.3, 0.4,0.6,0.8,1.0)於鈦酸鋇中,探討在空氣與氧氣兩種不同氧分壓的氣氛下,室溫的電阻值變化以及利用SEM觀察其微結構,得到晶粒大小變化與氧化鈥添加量及電阻變化的關係。可以發現隨著添加量的增加,電阻的變化可以分成兩個階段。在第一個階段中(x<0.2),電阻隨著添加量的增加而降低,直到x=0.2時為最低。而第二個階段中(x>0.2),電阻隨著添加量的增加而增加,因此,可以得到一個在x=0.2時的轉折點。
    在本研究的第二個部分中,主要探討在不同氣氛下燒結的結構與電性性質之變化。以鈦酸鋇粉末為主,均添加1% Ho2O3與y %BaCO3(y=0, 0.5, 1, 1.5, 2)。並分別在空氣中與還原氣氛(5%H2-95%N2)下燒結。從電阻的變化,可以得知隨著添加Ba2+離子的增加去改變鈦酸鋇的Ba/Ti 比,影響H03+離子所佔據的位置,使得H03+離子從起初
    的Ba位置上,開始部份轉移佔據到Ti位置上,其電性也從半導化變成絕緣。並以X光繞射分析來觀察其結構,由原來的正方晶(tetragonal)轉變為立方晶(cubic)以及晶格常數的變化;其介電常數也隨著Ba2+離子添加量的增加而降低,居禮溫度(Tc)也隨之往低溫偏移。

    The research work on barium titanate mainly discussed the effect of doped with Ho2O3 on its electricity and dielectric. It will be divided into
    two parts: first, probing into the change of resistance at room temperature, the SEM analysis, grain size, and the amount of dopant by doping with a trace of x% Ho2O3 (x=0.05, 0.1, 0.2, 0.3, 0.4,0.6,0.8,1.0)fired under different oxygen partial pressures. From increasing of dopant the
    variation of resistance can be separated into two steps. The resistance decreased with adding the dopant until x=0.2 in the first step(x<0.2). On
    the other hand, it increased when x>0.2 for the second step. There is a turning point on x=0.2 hence. Second, structural changes and electricity
    of barium titanate(BT)ceramics doped with 1﹪Ho2O3 and y﹪BaCO3(y=0, 0.5, 1, 1.5, 2)are discussed in this investigation. Sintering of BT
    is proceeded both in air and reducing atmosphere. Variations in resistance indicates that, with the increasing the amount of Ba2+ ions, Ho3+ ions are
    removed from A sites and then occupy the B sites, which result in a switch from semiconducting into insulating behavior. And the original tetragonal structure transforms into cubic structure, which in turn lowers the dielectric constant.

    目錄 第一章前言……………………………………………………………..1 第二章理論基礎與文獻回顧………………………………….……….4 2-1 半導體陶瓷的簡介……………………………………….……..4 2-1-1 半導體陶瓷…………………………………………….…..4 2-1-2 半導體陶瓷的典型導電機構…………………………….4 2-1-3 施體/受體元素對鈦酸鋇性質的影響……………………6 2-2 鈦酸鋇的基本性質……………………………………………..9 2-2-1 鈦酸鋇單晶的晶體結構……………………………….....9 2-2-2 多晶鈦酸鋇的介電性質………………………………….12 2-2-3 組成對鈦酸鋇陶瓷顯微結構與介電性質的影響………15 2-2-4 孔隙率與晶粒大小對介電的影響………………………18 2-3 添加物對鈦酸鋇性質之影響………………………………...21 2-3-1 添加物的種類使Tc 點往高溫或低溫偏移………….…..21 2-3-2 添加物種類對介電性質的影響………………………...21 2-3-3 添加物對燒結行為的影響……………………………...22 2-4 PTCR……………………………………………………………24 2-4-1 PTCR 基本理論…………………………………………..24 2-4-2 PTCR 特性………………………………………………..29 2-5 Cole-Cole plots………………………………………………….30 第三章實驗步驟及方法………………………………………………36 3-1 藥品…………………………………………………………...36 3-2 實驗流程……………………………………………………...36 3-3 性質測試……………………………………………………...39 3-3-1 密度量測………………………………………………...39 3-3-2 X 光繞射分析………………………………………….39 3-3-3 介電性質量測…………………………………………...40 3-3-4 電阻之量測……………………………………………...40 3-3-5 SEM 顯微結構分析……………………………………40 3-3-6 晶粒大小之計算………………………………………...41 第四章結果與討論……………………………………………………42 4-1 製程一……………………………………………………………..42 4-1-1 添加量對電性的影響………………………………………...42 4-1-2 燒結過程對電性的影響………………………………………46 4-1-3 鈥添加對PTCR 的影響……………………………………….47 4-1-4 利用Impedance 分析電性……………………………………51 4-1-5 鈥添加對顯微結構分析……………………………………...49 4-2 製程二……………………………………………………………..64 4-2-1 密度量測……………………………………………………...64 4-2-2 晶格常數分析…………………………………………………64 4-2-3 添加量對相的影響…………………………………………...67 4-2-4 電性性質的分析………………………………………………69 第五章結論……………………………………………………………71 第六章參考文獻……………………………………...……………….72 圖目錄 圖2-1(a)本質傳到的價帶模型 (b)半導體陶瓷的能帶模型………………………………..……7 圖2-2 鈦酸鋇在不同溫度下,導電率隨氧分壓之變化曲線………......8 表一、離子半徑表………………………………………………..…..…..8 圖2-3(a) 鈦酸鋇晶體中原子的排列 (b)鈦酸鋇之晶體結構對溫度變化之關係……………..……10 圖2-4:(a) 鈦離子偏離中心位置 (b)鈦酸鋇之自發極化隨溫度之變化關係………………...….11 圖2-5:(a)鈦酸鋇之晶格常數對溫度的變化關係 (b)a-軸、c-軸介電常數對溫度的變化關係……………...……13 圖2-6 鈦酸鋇多晶結構與其晶域……………………………………..14 圖2-7 BaO-TiO2的相平衡圖…………………………………………16 圖2-8 BaTiO3-TiO2 的平衡相圖…………………………………...…17 圖2-9 鈦酸鋇晶粒大小與介電性質的關係……………………....…20 圖2-10 晶粒大小對正方性(Tetragonality)的影響…………………20 圖2-11 為等價置換對鈦酸鋇相轉換溫度之影響………………...….23 圖2-12 鈦酸鋇陶瓷半導體電阻的正溫度係數(PTCR)特性……..28 圖2-13 Heywang’s model…………………………………………….28 圖2-14 利用惠斯敦電橋量測電阻與電容……………………………32 圖2-15 多晶的固體電解質的平衡電路圖…………………………….32 圖2-16 電阻和電容串聯且各別有電壓E1 和E2 通過………………….34 圖2-17 電阻和電容的並聯……………………………………………34 圖2-18 電阻與電容串聯的阻抗圖……………………………………34 圖2-19 電阻與電容並聯的阻抗圖……………………………………35 圖3-1 製程一流程圖……………………………………………….….37 圖3-2 製程二流程圖……………………………………………….….38 圖4-1 導電率隨著不同的燒結條件與添加量的關係…………….….44 表4-2 電阻在不同的燒結過程中與添加量的關係……………….….45 圖4-3 (a)A與CA的PTCR行為…………………………………....…48 圖4-3 (b)O 與CO 的PTCR 行為………………………………….49 表三各試片的室溫電阻係數以及min max ρ ρ 值的比較………………....51 圖4-4 在A 燒結條件下,添加量與室溫impedance 的關係圖……....51 圖4-5 在A 燒結條件下,添加量與與Tc 點impedance 的關係……..52 圖4-6 在CA燒結條件下,添加量與室溫impedance 的關係圖…...…53 圖4-7 在CA燒結條件下,添加量與與Tc點impedance 的關係……...54 圖4-8 在O燒結條件下,添加量與室溫impedance 的關係圖………..55 圖4-9 在O燒結條件下,添加量與與Tc 點impedance 的關係…….…56 圖4-10 在CO燒結條件下,添加量與室溫impedance 的關係圖….....57 圖4-11 在CO 燒結條件下,添加量與與Tc 點impedance 的關係….58 圖4-12 隨著A、CA、O、CO 四種製程添加量的晶粒變化………59 圖4-13 A 製程中添量x%的SEM 圖……………………………..…60 圖4-14 CA 製程中添量x%的SEM圖…..……………………….….61 圖4-15 O 製程中添量x%的SEM 圖…………………………….….62 圖4-16 CO製程中添量x%的SEM圖……………………………….63 圖4-17 為c/a 對不同的BaTiO3 添加量的作圖…………………….…65 圖4-18 在空氣中與還原氣氛中,a、c 軸分別對不同BaCO3 添加量作 圖..……………………………………………………………...66 圖4-19、在空氣中不同的BaCO3 添加量之XRD 圖………….…….67 圖4-20、在還原氣氛中不同的BaCO3 添加量之XRD 圖………..….68 表四、在還原氣氛下,隨著BaCO3 添加量對電阻的量測………..….69 圖4-21、不同的BaCO3 添加量之介電常數對溫度作圖…………..…70

    第六章參考文獻
    1. Herbert, J. M.,“High permittivity ceramics sintered in hydrogen”.
    Trans. Br. Ceram. Soc., 62(8), 645(1963).
    2. Zhang, Xm, W, Han, Y. H., Lal, M. and Smyth, D. M.,“ Defect
    chemistry of BaTiO3 with additions of CaTiO3”. J. Am. Ceram. Soc.,
    70, pp.100-103,(1987).
    3. Sakabe, Y.,“Dielectric materials for base-meatl multiplayer ceramic
    capacitors”. Ceram. Bull., 1987, 66, 1338-1341.
    4. Hennings, D. F. K. and Schreinemacher, H.,“Ca acceptors in
    dielectric ceramics sintered in reducing atmosphere”. J. Eur.Ceram.
    Soc., 1995, 15, 795–800.
    5. Waser, R.,“Electrochemical boundary conditions for resistance
    degradation of doped alkaline-earth titanates”. J. Am. Ceram. Soc.,
    1989, 72(12), 2234.
    6. Lee, W. S., Groen, W. A., Schreinemacher, H. and Hennings, D.F. K.,
    “Dysprosium doped dielectric material for sintering in reducing
    atmosphere”. J. Electroceramics, 2000, 5(1).
    7. J. Daniels, K. H. Haerdtl, and R. Wernicke, “The PTC Effect of
    Barium Titanate ”Philips Tech Rev., 38(3), 73(1978/79)
    8. O. Saburi, “Properties of Semiconductive Barium Titanate”J. Phys.
    Soc. Jpn., 14, 1159(1959).
    9. N. H. Chan and D. M. Smyth,“Defect Chemistry of Donor-Doped
    BaTiO3”, J. Am. Ceram. Soc.,67, 285(1984).
    10. G. H. Jonker, Solid State Electron, 7, 895-903, 1964.
    11. N. G. Eror and D. M. Smyth, pp. 62~74 in The Chemistry of
    Extended Defects in Non-Metallic solid, Edited by L. Eyring and M.
    O’Keefe, North-Holland, Amsterdam, 1970.
    12. J. Daniels and K. H. Hardtl, D. Hennings and R. Wernicke, Philips
    Res. Rept., 31, 487-59 (1976).
    13. K. S. Mazdiyasni and L. M. Lawn, J. Am. Ceram. Soc., 54, 539~43
    (1971).
    14. L. A. Xue, Y. Chan and R. J. Brook, J. Mater. Sci., 7, 1163~65
    (1988).
    15. C. J. Ting, C. J. Peng, H. Y. Lu and S. T. Wu, J. Am. Ceram. Soc.,
    73
    73(2), pp. 329~34 (1990).
    16. Seshu. B.Desu and David A. Payne,“Interfacial Segregation in
    Perovskites: , Microstructure and Electrical Porperties”, Ⅲ
    J.Am.Ceram.Soc., 73(11), pp. 3407-15(1990)
    17. S. Shirasaki, M. Tsukioka, H. Yamamura, and H. Oshima, Solid State
    Communications, 19, pp. 721~24 (1976)
    18. S. Shirasaki, H. Yamamura, H. Haneda, K. Kakgawa, and J. Moori, J.
    Chem. Phys., 73, pp. 4640~45 (1980).
    19. S. Shirasaki, H. Handea, K. Arai, and M. Fujimoto, J. Mater. Sci., 22,
    pp.4439~45 (1987).
    20. 邱碧秀,電子陶瓷材料(1989).
    21. J. Nowotny, Electronic Ceramic Materials(1991).
    22. M. Tanaka. J. Phys. Soc. Jap. 19(1964)954~970.
    23. G. Arlt et al., J. Appl. Phys., 51(9)4056~4960 (1980).
    24. T. Mitsui er al.,“Introduction to Physics of Ferroelectrics”, Gordon
    and Breach, New York, 1976.
    25. F. Jona et al., Ferroelectrics, 49(1983)3~14.
    26. D. E. Rase and R. Roy, “Phase Equilibria in the System BaO-TiO2”,
    J. Am. Ceram. Soc., 38(3), pp. 102-113 (1955).
    27. R. K. Sharma, N. H. Chan, and D. M. Smyth, “Solubility of TiO2 in
    BaTiO3”, J. Am. Ceram. Soc., 64(8), pp. 448-451 (1981).
    28. Y. H. Hu, M. P. Harmer, and D. M. Smyth, “Solubility of BaO in
    BaTiO3”, J. Am. Ceram. Soc., 68(7), pp. 372-376 (1985).
    29. K. W. Kirby and B. A. Wechsler, “Phase Relations in the Barium
    Titanate-Titanium Oxide System”, J. Am. Ceram. Soc., 74(8), pp.
    1841-1847 (1991).
    30. A. K. Maurice and R. C. Buchanan, “Preparation and Stoichiometry
    Effects on Microstructure and Properties of High Purity BaTiO3”,
    Ferroelectrics, 74, pp. 61-75 (1987).
    31. T. Yamamoto, “Influence of small Ba/Ti Non-Stoichiometry on Grain
    Growth Behavior in Barium Titanate”, Bri. Ceram. Trans., 94(5), pp.
    196-200 (1995).
    32. M.P.Harmer, Y.H.Hu, M.Lal, and D.M.Smyth, “The Effects of
    74
    Composition and Microstructure on Electrical Degradation in
    BaTiO3”, Ferroelectrics., 49, pp.71-74 (1983)
    33. N. H. Chan, R. K. Sharma, and D. M. Smyth, “Nonstoichiometry in
    Undoped BaTiO3”, J. Am. Ceram. Soc., 64(9), pp. 56-562 (1981).
    34. H. U. Anderson, “Influence of Ba/Ti Ratio on the Initial Sintering
    Kinetics of BaTiO3”, J. Am. Ceram. Soc., 56(11), pp. 605-606
    (1973).
    35. Jung-Kun Lee , Kug-Sun Hong and Jin-Wook Jang,“Role of Ba/Ti
    Ratios in the Dielectric Properties of BaTiO3 Ceramics”, J. Am.
    Ceram. Soc., 84(9), pp. 2001-2116 (2001).
    36. J. F. Murray, “Some Causes and Effects of Phase Other Than
    Tetragonal BaTiO3 in Barium Titanate”, Am. Ceram. Soc. Bull.,
    37(11), pp. 476-479 (1958).
    37. A. Beauger, J. C. Mutin, and J. C. Niepce, “Role and Behavior of
    Orthotitanate Ba2TiO4 during the Processing of BaTiO3 Based
    Ferroelectric Ceramics”, J. Mater. Sci., 19, pp. 195-201 (1984).
    38. B. Jaffe,W. R. Coot et al., Piezoelectric Ceramics, p91-99,Academic
    Press, London and New York,1971.
    39. Z. Q. Zhuang, M. P. Harmer, D. M. Smyth and R. E. Newnham, “The
    Effect of Octahetrally Coordinated Calcium on the Ferroelectric
    Transition of BaTiO3”, Mat. Res. Bull., 22, pp.1329-1335, 1987.
    40. N. G. Eror and D. M. Smyth, pp.62-74 in the Chemistry of Extended
    Defects in Nonmetallic Solid, Edited by L. Eyring and M. O’Keefe,
    North-Holland, Amsterdam, 1970.
    41. K. S. Mazdiyasni and L. M. lawn, J. Am. Ceram. Soc., 54, 539-43
    (1971).
    42. L. A. Xue, Y. Chen and R. J. Brook, J. Mater. Sci., 7, 1163-65 (1988).
    43. C. J. Ting, C. J. Peng, H. Y. Lu and S. T. Wu, J. Am. Ceram. Soc.,
    73(2) 329-34 (1990).
    44. S. B. Desu and E. C. Subbarao, “Mn-Doped BaTiO3”, Grain
    Boundary Phenmena in Electronic Ceramics, Edited by Lionel M.
    levinson, 1981, pp. 189-206
    45. W. D. Kingery, H. K. Bown and D. R. Uhlmann (Eds.), “Introduction
    to Ceramics, 2nd Ed., p61, p461, p489, p498, p900, John,
    Wiley&Sons, Singapore, 1991.
    75
    46. M. F. Yan, R. M. Cannon, and H.K. Bowen, in Ceramic
    Microstructures’ 76, pp276, 1976.
    47. R. Wernicke, Phys. State. Sol.(a), 47, 139, 1978.
    48. L. A. Xue, Y. Chen, R. J. Brook, J. Mat. Sci. Letters, 7, 1163, 1988.
    49. M. F. Yan, Mat.Sci.Eng.,48, 53, 1981.
    50. J. B. Macchesney, P. K. Gallagher and T. V. Dimarcello, J. Am. Ceram.
    Soc., 46, 197, 1963.
    51. D. F. K. Henning et al, “Temperature-Stable Dielectrics Materials in
    the System BaTiO3-Nb2O5-Co3O4”,J. Europ. Ceram. Soc.,14,
    462-471 (1994).
    52. 丁慶瑞,精密陶瓷元件製作與應用,工研院材料所,1989.
    53. G. V. Lewis and C. R. A. Catlow, Radiat. Eff. 73, 307, (1983)
    54. N. H. Chan, and D. M. Smyth, J. Am. Ceram. Soc., 67, 285, (1984).
    55. W. Heywang,“Barium Titanate as a Semiconductor with Blocking
    Layerw“, Solid State Electr., 3(1), 51(1961).
    56. O. I V’yunov and A. G. Belous, “ Phase Transformation in the
    Synthesis of Ba(Ti1-xMx)O3-based PTCR Ceramic ”, J. Eur. Ceram.
    Soc., 19, pp. 935-938(1999).
    57. W. Heywang,“Resistivity Anomaly in Doped Barium Titanate”, J.
    Am. Ceram. Soc., 47(10), pp. 484~90 (1964).
    58. W. Heywang,“Semiconducting Barium Titanate”, J. Mater. Sci., 6, pp.
    1214~26 (1971).
    59. N. G. Eror and D. M. Smyth, pp. 62-74 in the Chemistry of Extended
    Defects in Nonmetallic Solid, Edited by L. Eyring and M. O’Keefe,
    North-Holland, Amsterdam, 1970.
    60. Seok-Hyun Yoon and Hwan Kim, “Effect of donor(Nb) concentration
    on the bulk electrical resistivity of Nb-doped barium titanate”, J.
    Appl. Phys., 92(2), pp. 1093-1047(2002).
    61. H. M. Al-Allak, G. J. Russell and J. Woods, “The effect of annealing
    on the characteristics of semiconducting BaTiO3 positive temperature
    coefficient of resistance devies”, J. Phys. D: Appl. Phys., 20,
    pp.1645-1651(1987).
    62. H. M. Al-Allak, A. W. Brinkman, G. J. Russell, and J. Woods, J. Appl.
    76
    Phys., 63, 4530, (1988).
    63. (12)J. Daniels and K. H. Hardtl, Philips Res. Rept., 31,
    487-59(1976)
    64. K. S. Mazdiyasni and L. M. lawn, J. Am. Ceram. Soc., 54,
    539-43(1971)
    65. L. A. Xue, Y. Chen and R. J. Brood, J. Mater. Sci., 7, 1163-65(1988)
    66. C. J. Ting, C. J. Peng, H. Y. Lu. And S. T. Wu, J. Am. Ceram. Soc.,
    73(2)329-34(1990)
    67. (44)S. B. Desu and E. C. Subbarao, “Mn-Doped BaTiO3”, Grain
    Boundary Phenmena in Electronic Ceramics, Edited by Lionel M.
    levinson, 1981, pp. 189-206

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE