簡易檢索 / 詳目顯示

研究生: 林靜
Lin, Ching
論文名稱: P-type Cu2O/Ni(OH)2複合材料備製與分析及其作為陰極電極板在光電化學裂解水產氫之應用
Synthesis and characterizations of p-type Cu2O/Ni(OH)2 composite as a photocathode for H2 production in photoelectrochemical water splitting
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 86
中文關鍵詞: 氧化亞銅奈米複合物產氫
外文關鍵詞: Cuprous oxide, Nanocomposite, Hydrogen production
相關次數: 點閱:83下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來, p型氧化亞銅半導體受到太陽能電池領域的矚目,因其能隙(2.1eV)可以吸收可見光而適合作為電極板材料,然而其作為電極材料最大的阻礙為在照光下氧化亞銅在水溶液中會不穩定,且電子電洞對再結合速率非常快,因此我們需要利用氫氧化鎳進一步改善氧化亞銅奈米球。本研究主要目的為製備及分析純氧化亞銅之基本性質,與不同比例的Cu2O/Ni(OH)2奈米複合物的晶體結構
    、光學性質等的探討,及其分別作為陰極電極板產氫之應用。
    本論文實驗結果與討論將分成兩大部分,第一部份為製備Cu2O奈米球,前驅物為五水硫酸銅進行水溶液合成法,透過改變老化時間及酸鹼值控制其顆粒尺寸、結晶性與組成比例,接著將氧化亞銅電極板進行IPCE與PCE量測。第二部分為Cu2O/Ni(OH)2奈米複合物,以六水硝酸鎳為鎳的前驅物,控制前驅物濃度
    ,合成出不同莫耳比例的Cu2O/Ni(OH)2複合物。Ni(OH)2作為氧化亞銅的保護層,能夠提升Cu2O於電解液穩定性,透過磷光放射光譜證實Ni(OH)2可以接收Cu2O的激發電子,使電子電洞對再結合速率降低,以提高光電化學產氫效率。本實驗使用X 射線繞射儀、場發射掃描式電子顯微鏡與穿透式電子顯微鏡分析其晶體結構、表面形貌,電子能譜儀分析表面化學組成,可見光/紫外光光譜儀量分析光學性質及其光吸收能力,以三電極式光電化學進行量測,評估產氫能力,此研究製備出創新、非貴金屬之複合物材料。

    Core shell structure of Cu2O/Ni(OH)2 composites was first synthesized using a two-step solution synthesis method with CuSO4·5H2O and Ni(NO3)2·6H2O as precursors. The composite structure was obtained at room temperature for a time as short as 30 min. The Ni(OH)2 acts as effective co-catalysts suppressing of electron-hole recombination and also the improvement of photoconversion efficiency (PCE) of PECs. The Cu2O/Ni(OH)2 composite NPs with controllable dimensions and compositions were obtained by adjusting the precursor concentration and reaction time. The allows the formation of porous Cu2O/Ni(OH)2 layers with desirable surface areas for effective hydrogen generation. The resulting samples were examined using scanning electron microscope and transmission electron microscopy. The surface chemistry was investigated using X-ray photoelectron spectroscopy. We demonstrate the use of such a novel porous Cu2O/Ni(OH)2 electrode for H2 evolution.

    摘要 I Extended Abstract II 誌謝 X 總目錄 XI 表目錄 XIV 圖目錄 XV 第1章 緒論 1 1-1 前言 1 1-2 研究背景 2 1-3 研究動機 5 第2章 理論原理與文獻回顧 8 2-1 p型氧化亞銅 8 2-2 光化學反應 10 2-3 光電化學電池 13 2-4 光電化學電解水產氫反應與原理 15 2-5 半導體光電及特性介紹 19 2-6 各類半導體元件運作原理 21 第3章 實驗方法及分析原理 23 3-1 實驗藥品與材料 23 3-2 實驗儀器設備 24 3-3 實驗流程與分析方法 25 3-4 實驗步驟 26 3-4-1 氧化亞銅奈米球珠之製備 26 3-4-2 氧化亞銅/氫氧化鎳複合物之製備 29 3-5 光電極特性分析 31 3-5-1 XRD晶體結構原理與分析 31 3-5-2 化學鍵結分析 32 3-5-3 粉末形貌分析 34 3-5-4 UV-vis光學分析 35 3-5-5 單波長光電轉換效率分析 36 第4章 實驗結果與討論 38 4-1 氧化亞銅性質分析 38 4-1-1 晶體結構分析 38 4-1-2 表面形貌分析 42 4-1-3 化學鍵結分析 48 4-1-4 光學性質分析 52 4-1-5 光電轉換效率量測 56 4-1-6 自製光電極材料之產氫效率評估 61 4-2 氧化亞銅/氫氧化鎳複合物性質分析 66 4-2-1 氧化亞銅/氫氧化鎳複合物結構分析 66 4-2-2 氧化亞銅/氫氧化鎳複合物表面形貌分析 68 4-2-3 氧化亞銅/氫氧化鎳複合物化學鍵結分析 71 4-2-4 氧化亞銅/氫氧化鎳複合物光學性質分析 74 4-2-5 氧化亞銅/氫氧化鎳複合物微光激發光光學分析 76 4-2-6 氧化亞銅/氫氧化鎳複合物光電極材料之產氫效率評估 78 第5章 結論 81 第6章 文獻 83

    1. M.R. Gao, Y.F. Xu, J. Jiang, S.H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chemical Society Reviews, 2013. 42(7) 2986-3017.
    2. A.K. Ray, A.A.C.M. Beenackers, Novel Photocatalytic Reactor for Water Purification. AIChE, 1998. 44(2) 477-483.
    3. A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 2013. 238 37-38.
    4. K. Biernat, A. Malinowski, M. Gnat, The Possibility of Future Biofuels Production Using Waste Carbon Dioxide and Solar Energy. 2013.
    5. J.S. Jang, H.G. Kim, J.S. Lee, Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting. Catalysis Today, 2012. 185(1) 270-277.
    6. A. Kubacka, M. Fernandez-Garcia, G. Colon, Advanced nanoarchitectures for solar photocatalytic applications. Chemical Reviews, 2012. 112(3) 1555-1614.
    7. H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: A review. Renewable and Sustainable Energy Reviews, 2015. 43 599-610.
    8. H. Raebiger, S. Lany,A. Zunger, Origins of the p-type nature and cation deficiency in Cu2O and related materials. Physical Review B, 2007. 76(4) 045209.
    9. F. Hu, Y. Zou, L. Wang, Y. Wen, Y. Xiong, Photostable Cu2O photoelectrodes fabricated by facile Zn-doping electrodeposition. International Journal of Hydrogen Energy, 2016. 41(34) 15172-15180.
    10. Z. Zhang, P. Wang, Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. Journal of Materials Chemistry, 2012. 22(6) 2456-2464.
    11. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction. Nature Materials, 2011. 10(6) 456-461.
    12. P. E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Photoelectrochemistry of Electrodeposited Cu2O. Journal of The Electrochemical Society, 2000. 147(2) 486-489.
    13. J. Yu, Y. Hai, B. Cheng, Enhanced Photocatalytic H2-Production Activity of TiO2 by Ni(OH)2 Cluster Modification. The Journal of Physical Chemistry C, 2011. 115(11) 4953-4958.
    14. S. Leong, D. Li, K. Hapgood, X. Zhang, H. Wang, Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. Applied Catalysis B: Environmental, 2016. 198 224-233.
    15. W.Y. Cheng, T.H. Yu, K.J. Chao, S.Y. Lu, Cu2O-Decorated Mesoporous TiO2 Beads as a Highly Efficient Photocatalyst for Hydrogen Production. ChemCatChem, 2014. 6(1) 293-300.
    16. L. Liu, X. Gu, C. Sun, H. Li, Y. Deng, F. Gao, L. Dong, In situ loading of ultra-small Cu2O particles on TiO2 nanosheets to enhance the visible-light photoactivity. Nanoscale, 2012. 4(20) 6351-6359.
    17. J. Ran, J. Yu, M. Jaroniec, Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. Green Chemistry, 2011. 13(10) 2708.
    18. H. Wu, N. Zhang, Z. Cao, H. Wang, S. Hong, The adsorption of CO2, H2CO3, HCO3− and CO32− on Cu2O (111) surface: First-principles study. International Journal of Quantum Chemistry, 2012. 112(12) 2532-2540.
    19. C.H.B. Ng, W.Y. Fan, Shape Evolution of Cu2O Nanostructures via Kinetic and Thermodynamic Controlled Growth. The Journal of Physical Chemistry B, 2006. 110 20801-20807.
    20. Y.Chang, J.J.Teo, H.C.Zeng, Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres. Langmuir, 2005. 21 1074-1079.
    21. H. Derin, K. Kantarli, Optical characterization of thin thermal oxide films on copper by ellipsometry. Applied Physics A: Materials Science & Processing, 2002. 75(3) 391-395.
    22. P.D. Tran, L.H. Wong, J. Barber, J.S.C. Loo, Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science, 2012. 5(3) 5902-5918.
    23. T. Maruyama, Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Solar Energy Materials & Solar Cells 1998. 56 85-92.
    24. S.K. T. Kosugi, Novel Spray-Pyrolysis Deposition of Cuprous Oxide Thin Films. Journal of The American Ceramic Society, 1998. 81(12) 3117-3124.
    25. H. Matsumura, A. Fujii, T. Kitatani, Properties of High-Mobility Cu2O Films Prepared by Thermal Oxidation of Cu at Low Temperatures. The Japanese Journal of Applied Physics, 1996. 35 5631-5636.
    26. C.H. Kuo, M.H. Huang, Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today, 2010. 5(2) 106-116.
    27. C.H. Kuo, C.H. Chen, M.H. Huang, Seed-Mediated Synthesis of Monodispersed Cu2O Nanocubes with Five Different Size Ranges from 40 to 420 nm. Advanced Functional Materials, 2007. 17(18) 3773-3780.
    28. Y. Sui, Y. Zhang, W. Fu, H. Yang, Q. Zhao, P. Sun, D. Ma, M. Yuan, Y. Li, G. Zou, Low-temperature template-free synthesis of Cu2O hollow spheres. Journal of Crystal Growth, 2009. 311(8) 2285-2290.
    29. T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 2014. 43(22) 7520-7535.
    30. T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, S.L. Suib, Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances. Molecules, 2016. 21(7) 900.
    31. A Kudo, H Kato, I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry Letters, 2004. 33(12) 1534-1539.
    32. X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015. 44(15) 5148-5180.
    33. A.A. Arbab, K.C. Sun, I.A. Sahito, M.B. Qadir, S.H. Jeong, Fabrication of highly electro catalytic active layer of multi walled carbon nanotube/enzyme for Pt-free dye sensitized solar cells. Applied Surface Science, 2015. 349 174-183.
    34. R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010. 11(4) 179-209.
    35. A.J.Bard, L.R.Faulkner, Electrochemical methods. 2001.
    36. L.J. Minggu, W.R.W. Daud, M.B. Kassim, An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2010. 35(11) 5233-5244.
    37. Z. Zhang, C. Ma, M. Huang, F. Li, S. Zhu, C. Hua, L. Yu, H. Zheng, X. Hu, Y. Zhang, Birnessite MnO2-decorated hollow dandelion-like CuO architectures for supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2015. 26(6) 4212-4220.
    38. F.A. Akgul, G. Akgul, N. Yildirim, H.E. Unalan, R. Turan, Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Materials Chemistry and Physics, 2014. 147(3) 987-995.
    39. S.K. Chawla, N. Sankarraman, J.H. Payer, Diagnostic spectra for XPS analysis of Cu-O-S-H compounds. Electron Spectroscopy and Related Phenomena, 1992. 61 1-18.
    40. J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, Electronic structure of Cu2O and CuO. Physical Review B, 1988. 38(16) 11322- 11330.
    41. L. Chen, Y. Zhang, P. Zhu, F. Zhou, W. Zeng, D.D. Lu, R. Sun, C. Wong, Copper salts mediated morphological transformation of Cu2O from cubes to hierarchical flower-like or microspheres and their supercapacitors performances. Scientific Reports, 2015. 5 9672.
    42. C. Lu, L. Qi, J. Yang, X. Wang, D.Zhang, J. Xie, J. Ma, One-Pot Synthesis of Octahedral Cu2O Nanocages via a Catalytic Solution Route. Advanced Materials, 2005. 17(21) 2562-2567.
    43. W.H. Ke, C.F. Hsia, Y.J. Chen, M.H. Huang, Synthesis of Ultrasmall Cu2O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination. Small, 2016. 12(26) 3530-3534.
    44. L. Xu, F. Zhang, X. Song, Z. Yin, Y. Bu, Construction of reduced graphene oxide-supported Ag–Cu2O composites with hierarchical structures for enhanced photocatalytic activities and recyclability. Journal of Materials Chemistry A, 2015. 3(11) 5923-5933.
    45. Y. Yang, D. Xu, Q. Wu, P. Diao, Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction. Scientific Reports, 2016. 6 35158.
    46. C.S. Tan, S.C. Hsu, W.H. Ke, L.J. Chen, M.H. Huang, Facet-dependent electrical conductivity properties of Cu2O crystals. Nano Letters, 2015. 15(3) 2155-2160.
    47. H. Liu, J. Zhang, D. Xu, B. Zhang, L. Shi, L. Huang, S. Tan, In situ formation of Ni(OH)2 nanoparticle on nitrogen-doped reduced graphene oxide nanosheet for high-performance supercapacitor electrode material. Applied Surface Science, 2014. 317 370-377.
    48. T.A. J.W. Lee, D. Soundararajan, J.M. Koc, J.D. Kim, Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chemical Communications, 2011. 47(22) 6305-6307.
    49. R. Wang, J. Lang, Y. Liu, Z. Lin, X. Yan, Ultra-small, size-controlled Ni(OH)2 nanoparticles: elucidating the relationship between particle size and electrochemical performance for advanced energy storage devices. NPG Asia Materials 2015. 7 e183.
    50. U. Singh, A. Banerjee, D. Mhamane, A. Suryawanshi, K.K. Upadhyay, S. Ogale, Surfactant free gram scale synthesis of mesoporous Ni(OH)2–r-GO nanocomposite for high rate pseudocapacitor application. RSC Advances, 2014. 4(75) 39875-39883.
    51. P. Wang, X. Zhao, H. Li, L. Li, J. Li, G. Ma, J. Chang, Temperature sensitive optical properties of exciton and room-temperature visible light emission from disordered Cu2O nanowires. RSC Advances, 2014. 4(71) 37542-37546.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE