| 研究生: | 王嘉慶 Wang, Chia-Ching | 
|---|---|
| 論文名稱: | 台灣實行單一燃料政策:利用恆定體積燃燒室實施石油航空燃料的點火特性研究 Towards a single fuel policy in Taiwan: A study of ignition characteristics of petroleum jet fuels using a constant volume combustion chamber. | 
| 指導教授: | 王偉成 Wang, Wei-Cheng | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) | 
| 論文出版年: | 2021 | 
| 畢業學年度: | 109 | 
| 語文別: | 中文 | 
| 論文頁數: | 33 | 
| 中文關鍵詞: | 恆定體積燃燒室 、總點火延遲時間 、冷焰期間點火延遲時間 、燃油壓力變化 、熱釋放效率 | 
| 外文關鍵詞: | Constant volume combustion chamber, total ignition delay time, cold flame ignition delay time, fuel pressure change, heat release rate | 
| 相關次數: | 點閱:83 下載:28 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
本文針對石油航空燃料(JET A-1、JP-5及JP-8)及混合物(50%柴油及50%JP-5)在恆定體積燃燒室(CVCC)實施點火特性之研究,為了在台灣能實現單一燃料政策之動機,本文操作參數具有總點火延遲時間、冷焰期間點火延遲時間、燃油壓力變化、熱釋放效率,將JP-8設定為主要燃料,將取代JET A-1和JP-5之使用,實驗設定在燃燒室壓力為10、15及20±0.2bar,且在600至818 ±5K之溫度下,各噴射5次所得之平均數進行分析,可獲得總點火延遲時間等相關數據,再與燃料內含烷烴類、異烷類、環烷類、芳香烴類之比例及碳氫比進行比對分析,分析結果,在高溫下總點火延遲及冷焰期間點火延遲時間時間JP-5 > JP-8 > JET A-1,JP-5熱釋放速率(HRR)最小且具有多階段的尖峰值,可能是因為環烷類最多,JP-8熱釋放速率最大,可能是因為異烷類最多,結論是在低溫下,JP-8點火延遲特性略有差異之下,可取代JP-5和JET A-1;在高溫下總點火延遲及冷焰期間點火延遲時間時間JP-5 > 混合物 > 柴油,JP-5比較晚點燃及熱釋放速率最小且具有多階段的尖峰值,可能是因為環烷類(Cyclo-Alkanes)最多,導致較晚點火燃燒,混合物比較早點燃,可能是因為異烷類(Iso-Alkanes)最多,結論是在低溫下,JP-8點火延遲特性略有差異之下,可取代混合物、JP-5和JET A-1。
This study investigated the spray ignition characteristics of petroleum jet fuels (JET A-1、JP-5 and JP-8) and mixed oil (50% diesel and 50% JP-5) using a constant volume combustion chamber. To achieve the motivation of a single fuel policy in Taiwan, the operating parameters in this article include total ignition delay time, ignition delay time during cold flame, fuel pressure change, and heat release rate. For use with JP-5, the experiment is set to the combustion chamber pressure of 10, 15 and 20 ± 0.2 bar, and at a temperature of 600 to 818 ± 5 K, the average of each injection of 5 times is analyzed, and the total ignition can be obtained relevant data such as delay time is compared and analyzed with the ratio of alkanes, iso-alkanes, cyclo-alkanes, aromatic and the hydrocarbon ratio in the fuel. The analysis result shows that the total ignition delay and cold flame ignition delay time at high-temperature( ) JP-5 > JP-8 > JET A-1. The conclusion is that at low-temperature ( ), the ignition delay characteristics of JP-8 are slightly different, which can replace JP-5 and JET A-1; At high-temperature, the total ignition delay and cold flame ignition delay time JP-5 > Mixed oil > Diesel. The conclusion is that at low-temperature, the ignition delay characteristics of JP-8 are slightly different. Below, it can replace mixed oil, JP-5 , and JET A-1.
[1]	A. Llamas, M. Lapuerta, A.-M. Al-Lal, and L. Canoira, "Oxygen Extended Sooting Index of FAME blends with aviation kerosene," Energy & fuels, vol. 27, pp. 6815-6822, 2013.
[2]	World Meteorological Organisation, WMO Statement on the State of the Global Climate in 2017, 2018.
[3]	M. Masiol and R. M. Harrison, "Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review," Atmospheric Environment, vol. 95, pp. 409-455, 2014.
[4]	N. Pavlenko and A. Kharina, "Policy and environmental implications of using HEFA+ for aviation," Retrieved from The International Council on Clean Transportation: https://theicct. org/sites/default/files/publications/Green-Diesel-Aviation_ICCT-Working-Paper_20180321_vF. pdf, 2018.
[5]	European Aviation Safety Agency, "European aviation environmental report," pp. 22-86, 2019.
[6]	中華航空股份有限公司法人座談會, p. 7, 2019.
[7]	長榮航空法人說明會, p. 6, 2019.
[8]	國防部, "109年度國防部所屬單位法定預算書表," pp. 147-148, 2020.
[9]	ASTM Standard, "ASTM D6751–09a Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels, ASTM International, West Conshohocken, PA," ed, 2009.
[10]	W. M. Solis, "Defense Management: Overarching Organizational Framework Could Improve DoD's Management of Energy Reduction Efforts for Military Operations," GOVERNMENT ACCOUNTABILITY OFFICE WASHINGTON DC2008.
[11]	經濟部能源局, "油價資訊," 2020.
[12]	North Atlantic Treaty Organization, "NATO logistics handbook," in Senior NATO Logisticians' Conference, Secretariat, NATO Headquarters, Brussels, 2007.
[13]	D. M. Korres, D. Karonis, E. Lois, M. B. Linck, and A. K. Gupta, "Aviation fuel JP-5 and biodiesel on a diesel engine," Fuel, vol. 87, pp. 70-78, 2008.
[14]	A. F. Alhikami and W.-C. Wang, "Experimental study of the spray ignition characteristics of hydro-processed renewable jet and petroleum jet fuels in a constant volume combustion chamber," Fuel, vol. 283, p. 119286.
[15]	A. F. Alhikami and W.-C. Wang, "Experimental study of the spray ignition characteristics of hydro-processed renewable jet and petroleum jet fuels in a constant volume combustion chamber," Fuel, vol. 283, p. 119286, 2021.
[16]	交通部民用航空局, "航空站分佈圖," 2020.
[17]	S. Burden, A. Tekawade, and M. A. Oehlschlaeger, "Ignition delay times for jet and diesel fuels: Constant volume spray and gas-phase shock tube measurements," Fuel, vol. 219, pp. 312-319, 2018.
[18]	D. Kang, V. Kalaskar, D. Kim, J. Martz, A. Violi, and A. Boehman, "Experimental study of autoignition characteristics of Jet-A surrogates and their validation in a motored engine and a constant-volume combustion chamber," Fuel, vol. 184, pp. 565-580, 2016.
[19]	W. J. Thoo, A. Kevric, H. K. Ng, S. Gan, P. Shayler, and A. La Rocca, "Characterisation of ignition delay period for a compression ignition engine operating on blended mixtures of diesel and gasoline," Applied thermal engineering, vol. 66, pp. 55-64, 2014.
[20]	D. Han, J. Zhai, and Z. Huang, "Autoignition of n-hexane, cyclohexane, and methylcyclohexane in a constant volume combustion chamber," Energy & Fuels, vol. 33, pp. 3576-3583, 2019.
[21]	K. Kumar and C.-J. Sung, "An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8," Combustion and Flame, vol. 157, pp. 676-685, 2010.
[22]	S. Rabl, T. Davies, A. McDougall, and R. Cracknell, "Understanding the relationship between ignition delay and burn duration in a constant volume vessel at diesel engine conditions," Proceedings of the Combustion Institute, vol. 35, pp. 2967-2974, 2015.
[23]	D. Kang, D. Kim, V. Kalaskar, A. Violi, and A. L. Boehman, "Experimental characterization of jet fuels under engine relevant conditions–Part 1: Effect of chemical composition on autoignition of conventional and alternative jet fuels," Fuel, vol. 239, pp. 1388-1404, 2019.
[24]	D. Valco, G. Gentz, C. Allen, M. Colket, T. Edwards, S. Gowdagiri, M. A. Oehlschlaeger, E. Toulson, and T. Lee, "Autoignition behavior of synthetic alternative jet fuels: An examination of chemical composition effects on ignition delays at low to intermediate temperatures," Proceedings of the Combustion Institute, vol. 35, pp. 2983-2991, 2015.
[25]	K. Min, D. J. Valco, A. Oldani, K. Kim, J. Temme, C.-B. M. Kweon, and T. Lee, "Autoignition of varied cetane number fuels at low temperatures," Proceedings of the Combustion Institute, vol. 37, pp. 5003-5011, 2019.
[26]	台灣中油股份有限公司, "石油產品規範," 2020.
[27]	O. Kuti, K. Nishida, M. Sarathy, and J. Zhu, "Fuel Spray Combustion of Waste Cooking Oil and Palm Oil Biodiesel: Direct Photography and Detailed Chemical Kinetics," SAE Technical Paper 0148-7191, 2013.
[28]	A. Tekawade and M. A. Oehlschlaeger, "An experimental study of the spray ignition of alkanes," Fuel, vol. 185, pp. 381-393, 2016.
[29]	P. Zhang, W. Ji, T. He, X. He, Z. Wang, B. Yang, and C. K. Law, "First-stage ignition delay in the negative temperature coefficient behavior: Experiment and simulation," Combustion and Flame, vol. 167, pp. 14-23, 2016.