| 研究生: |
李育賢 Li, Yu-Hsien |
|---|---|
| 論文名稱: |
切換式磁阻馬達電流控制器設計與轉矩漣波抑制分析 Design of Current Controller for Switched Reluctance Motor Considering Torque Ripple Reduction |
| 指導教授: |
謝旻甫
Hsieh, Min-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 切換式磁阻馬達 、漣波抑制 、疊代學習控制器 |
| 外文關鍵詞: | Switched Reluctance Motor (SRM), torque reduction, iteration learging control (ILC) |
| 相關次數: | 點閱:78 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
切換式磁阻馬達(Switched Reluctance Motor, SRM)具有結構簡單、高強健性、轉矩大、成本低等優點,但本身的雙凸極結構造成轉矩漣波大、噪聲高,使得切換式磁阻馬達使用場合受到很大的限制。因其電氣、磁路上特性呈高度的非線性,大幅增加了控制難度。若能有效的抑制其轉矩漣波,便是絕佳的動力來源,深具市場發展的潛力。
本研究先分析切換式磁阻馬達漣波產生的原因,再探討馬達於不同操作條件下,繞組電流需如何訂定激磁區間,才能有較小的轉矩漣波,並提出一動態調變邏輯。接著針對SRM的電流迴路作分析,於此迴路加入疊代學習控制器抑制其非線性的電氣特性,彌補一般電流控制器無法完美追蹤電流命命令的情形。最後討論傳統定電流命令下的缺點,於速度迴路再使用一個疊代學習控制器,用以補償不足的電流命令,達到抑制轉矩漣波的效果。
本文從電流激磁區間的調變,到電流命令的規劃與追蹤,做了一套完整的控制架構,最後以實測驗證提出的控制架構具有良好的轉矩漣波抑制能力。
Switched Reluctance Motor (SRM) benefits from simple structure, robustness, large torque output and low cost; however, the double-saliency structure produces large torque ripple, noise and vibration. This limits the application of SRM. The difficulity of SRM control originates from nonlinear electrical and mechanical characteristics. On the other hand, if the torque ripple can be effectively reduced, SRM can be regarded as a great power device with marketing potential.
This research firstly analyzes the source of the torque ripple. To achieve lower torque ripple, a dynamic modulating logic is proposed, through this the excitation current is investigated against different operating conditions of motor. The current loop of SRM is studied, and an iterative learning controller is then developed to reduce its non-linear characteristics. This is superior to the traditional constant current controller while the torque output might be insufficient. The proposed controller is coupled with the iterative learning controller to compensate insufficient torque. The results show that torque is significantly reduced.
This research accomplishes a control system for current excitation modulation and current loop with its tracking. Finally an experimental study is conducted to verify the capability of torque reduction.
[1]W. Cai and P. Pillay, “Resonant Frequencies and Mode Shapes of Switched Reluctance Motors,” IEEE Transactions on Energy Conversion, vol. 16, pp. 43-48, 2001.
[2]R. Krishnan, Switched Reluctance Motor Drives, CRC Press, Boca Roton, 2001.
[3]J. W. Lee, H.S. Kim, B.I. Kwon and B.T. Kim, “New Rotor Shape Design for Minimum Torque Ripple of SRM Using FEM,” IEEE Transcations Magnetics, vol. 40, pp. 754–757, 2004.
[4]T. J. E. Miller, Switched Reluctance Motors and Their Control, Magna Physics, Ohio and Oxford University Press, 1993.
[5]M. Ilic’-Spong, T. J. E. Miller, S. R. Macminn and J. S. Thorp, “Instantaneous Torque Control of Electric Motor Drives,” IEEE Transactions on Power Electronics, vol. PE-2, pp. 55-61, 1987.
[6]I. Husain and M. Ehsani, “Torque Ripple Minimization in Switched Reluctance Motor Drives by PWM Current Control,” in Proceedings of IEEE Transactions on Power Electronics, vol. 11, pp. 83-88, 1996.
[7]M. Rodrigues, P. J. Costa Branco, and W. Suemitsu, “Fuzzy Logic Torque Ripple Reduction by Turn-Off Angle Compensation for Switched Reluctance Motors,” IEEE Transactions on Power Electronics, vol. 48, pp. 711-715, 2001.
[8]H. Yang, S. K. Panda and Y. C. Liang, “Performance Comparison of Sliding Mode Control with PI Control for Four-Quadrant Operation of Switched Reluctance Motors,” in Proceeding of IEEE International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, pp. 381-387, 1996.
[9]S.K.Sahoo, S.K.Panda and Jian-Xin Xu, “Indirect Torque Control of Switched Reluctance Motors Using Iterative Learning Control,” IEEE Transcations on Power Electronics, vol. 20, pp. 200-208, 2005.
[10] K. M. Rahman, S. Gopalakrishnan, B. Fahimi, A. V. Rajarathnam and M. Ehsani, “Optimized Torque Control of Switched Reluctance Motor at All Operational Regimes Using Neural Network,” IEEE Transcations Industrial Applications, vol. 37, pp. 904-913, 2001.
[11]X. D. Xue, K. W. E. Cheng, and S. L. Ho, “Optimization and Evaluation of Torque-Sharing Functions for Torque Ripple Minimization in Switched Reluctance Motor Drives,” IEEE Transactions on Power Electronics, vol. 24, pp. 2076-2090, 2009.
[12]D.H. Lee, J. Liang, Z.G. Lee, and J.W. Ahn, “A Simple Nonlinear Logical Torque Sharing Function for Low-Torque Ripple SR Drive,” IEEE Transcations Industrial Electronics, vol. 56, pp. 3021-3028, 2009.
[13]D. S. Schramm, B.W.Williams, and T. C. Green, “Torque ripple reduction of switched reluctance motors by PWM phase current optimal profiling,” in Proceedings of IEEE Power Electronics Specialists Conference, vol. 2, pp. 857–860, 1992.
[14]P. Jinupun and P. Chi-KwongLuk, “Direct Torque Control for Sensor-Less Switched Reluctance Motor Drives,” Power Electronics and Variable Speed Drives, 1998. Seventh International Conference on (Conf. Publ. No. 456)
[15] A.D. Cheok and Y. Fukuda, “A New Torque and Flux Control Method for Switched Reluctance Motor Drives,” IEEE Transactions on Power Electronics, vol. 17, pp. 543-557, 2002.
[16]R. Krishnan, and P.N. Materu, “Design of a Single-Switch-Per-Phase Converter for Switched Reluctance Motor Drives,” IEEE Transcations Industrial Electronics, vol.37, pp. 469–476, 1990.
[17]S. Mir, I. Husain and M. E. Elbuluk, “Energy-Efficient C-Dump Converters for Switched Reluctance Motors,” IEEE Transactions on Power Electronics, vol. 12, pp. 912-921, 1997.
[18]R. C. Becerra, M. Ehsani and T. J. E. Miller, “Commutation of SR Motors,” IEEE Transactions on Power Electronics, vol. 8, pp. 257-263, 1993.
[19]S. K. Panda, K. Y. Chong and K. S. Lock, “Indirect Rotor Position Sensing for Variable Reluctance Motors,” in Proceedings of IEEE Industry Applications Society Annual Meeting, vol.1, pp. 644-648, 1994.
[20]J.P. Lyons, S.R. MacMinn, M.A. Preston, “Flux-Current Methods for SRM Rotor Position Estimation,” in Proceedings of IEEE Industry Applications Society Annual Meeting, pp. 482-487, 1991.
[21]M.T. DiRenzo, “Switched Reluctance Motor Control – Basic Operation and
Example Using the TMS320F240,” Texas Instruments, 2000.
[22]P. Zhang, P.A. Cassani, and S.S. Williamson, “An Accurate Inductance Profile Measurement Technique for Switched Reluctance Machines,” IEEE Transcations Industrial Electronics, vol. 57, no. 9, pp. 2972-2979, 2010.
[23]陳冠弘,高性能磁阻馬達驅動器研製,碩士論文, 國立成功大學電機系, 民國99年
[24]H. Ishikawa, Y. Kamada, and H. Naitoh, “Instantaneous Current Profile Control for Flat Torque of Switched Reluctance Motors,” IEEJ Transactions on Industry Applications, vol. 163, pp. 1113-1121, 2008.
[25]P. Chancharoensook and M.F. Rahman, “Dynamic Modeling of a Four-Phase 8/6 Switched Reluctance Motor Using Current and Torque Look-Up Tables,” in Proceedings of the 28th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp.491-496, 2002
[26]Z. Lin, D.S. Reay, B.W.Williams, and X. He, “High Performance Current Control for Switched Reluctance Motors with On-line Modeling,” in Proceedings of IEEE Power Electronics Specialists Conference, vol. 2, pp.1246-1251, 2004
[27] 蘇冠瑋,切換式磁阻馬達動態電流控制器設計與實現,碩士論文, 國立成功大學電機系, 民國101年
[28]D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Control Systems, vol. 26, pp. 96-114, 2006.
[29]R. W. Longman, “Iterative Learning Control and Repetitive Control for Engineering Practice,” International Journal of Control, vol. 73, no. 10, pp.930 -954, 2000.
[30]D. Wang, “On D-type and P-type ILC Designs and Anticipatory Approach,” International Journal of Control, vol. 73, no. 10, pp.890 -901 2000
[31] S. S. Saab, “Stochastic P-type/D-type Iterative Learning Control Algorithms,” International Journal of Control, vol. 76, no. 2, pp.139 -148 2003
[32]J. Ghosh and B. Paden, “Pseudo-Inverse Based Iterative Learning Control for Nonlinear Plants with Disturbances,” IEEE Transactions on Automatic Control, vol. 47, pp. 831-837, 2002.
[33]T. Sogo, “Stable Inversion for Nonminimum Phase Sampled-Data Systems and its Relation with the Continuous-Time Counterpart,” in Proceedings of 41st IEEE Conference Decision Control, pp.3730 -3735, 2002.
[34] S. Gunnarsson and M. Norrlof, “On the Design of ILC Algorithms Using Optimization,” Automatica, vol. 37, no. 12, pp.2011 -2016 2001.
[35]廖兼賢,以離散位置資訊作速度與加速度估測之研究,碩士論文,國立成功大學電機工程學系,2004。
[36]Y. Zheng, H. Sun, Y. Dong, and P. Li, “A Current Control Method of Switched Reluctance Motors Based on Iterative Learning Control Considering the Mutual Inductance,” in Proceedings of International Conference Electrical Machines and Systems, pp3401-3404, 2008.
[37]N.C. Sahoo, J.X. Xu, and S. K. Panda, “Low Torque Ripple Control of Switched Reluctance Motors Using Iterative Learning, ” IEEE Transactions on Energy Conversion, vol. 16, pp. 318 - 326, 2001.
[38]W. C. Gan and L. Qiu, “Torque and Velocity Ripple Elimination of AC Permanent Magnet Motor Control Systems Using the Internal Model Principle,” IEEE/ASME Transactions on Mechatronics, vol. 9, pp.436-447, 2004.
[39]R. Mitra1, W. Uddin1, Y. Sozer1, and I. Husain, “Torque Ripple Minimization of Switched Reluctance Motors Using Speed Signal Based Phase Current Profiling,” in Proceedings of the 3'd Annual IEEE EnergyTech Conference, pp.1-5, 2013.
[40]許閣良,具時變週期訊號之重覆控制器設計與實現,碩士論文,國立成功大學機械工程學系,2006
[41]曹峻嘉,運用疊代學習控制器於永磁同步馬達轉矩漣波抑制之實作,碩士論文,國立成功大學機械工程學系,2013
校內:2020-09-09公開