簡易檢索 / 詳目顯示

研究生: 張國誌
Chang, Kuo-Chih
論文名稱: 恩斯高斯龐加萊球雷射光束產生之探討
Investigation on the generation of Ince-Gaussian Poincare sphere laser beams
指導教授: 朱淑君
Chu, Shu-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 56
中文關鍵詞: 恩斯高斯模態龐加萊球達夫稜鏡馬赫-陳德干涉儀
外文關鍵詞: Ince-Gaussian Modes, Poincaré sphere, Dove Prism, Mach-Zehnder interferometer
相關次數: 點閱:108下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究目的為探討如何藉由恩斯高斯光束(Ince-Gaussian Beams)產生空間中具不同分布的龐加萊球雷射光束(Poincare Sphere Laser Beams)。我們利用極化光束分光鏡(Polarization Beam Splitter)將恩斯高斯雷射光束分成兩道偏振相互垂直的光束,並建構馬赫-陳德干涉儀(Mach-Zehnder Interferometer),在其中一道光路中加入一達夫稜鏡(Dove Prism),使其中一道光場旋轉90度。最後在干涉儀後方加入四分之一波片(Quarter-Wave Plate,簡稱QWP),使兩道光束變成彼此正交的任一偏振態。利用這樣的方式,我們可以建構出於空間上具不同偏振分布的龐加萊球雷射光束。
    在本論文的工作中,成功利用馬赫-陳德干涉儀建立出龐加萊球雷射光束,並測量了IGe1,1、IGe4,4、IGe5,3三種不同的模態其空間偏振的分布,並與數值模擬做比較,重新計算出其橢圓偏振分布。並利用四分之一波長板,控制兩道光束疊加時的偏振態,進而控制橢圓偏振分布。

    The purpose of this paper is to investigate how to generate the Poincaré sphere laser beam with different spatial distributions of Ince-Gaussian beams. We propose a new Mach-Zehnder-type interferometer. In this setup, we use the polarization beam splitter to divide the Ince-Gaussian Beams into two beams of polarizations perpendicular to each other, add a Dove Prism to one of the paths to rotate the fields by 90 degrees, and finally add the Quarter-Wave Plate to the rear of the interferometer so that the two beams become any of the polarization states that are orthogonal to each other. With the proposed interferometer, we can construct Poincaré sphere laser beams with different polarization distributions in space. In the work of this thesis, we used Mach-Zehnder interferometer to establish the Poincaré sphere laser beams, and measure the distributions of the spatial polarization of IGe1,1 and IGe4,4. We use the Quarter-Wave Plate to control the polarization states of the two beams so as to the elliptical polarization distribution of the resulting beams. The experimental results is compared with the numerical simulation.

    第1章 前言 1 第1節 前言 1 第2節 研究動機與章節設計 1 第2章 雷射原理 3 第1節 雷射基本原理 3 第2節 恩斯高斯模態之數學形式 5 第3節 恩斯高斯模態的分類及激發方法 10 第3章 達夫稜鏡和龐加萊球光束 14 第1節 達夫稜鏡的功能與作用 14 第2節 龐加萊球與其數學意義 15 第3節 龐加萊球光束 17 第4章 實驗架設與步驟 19 第1節 激發恩斯高斯雷射之架設 19 第2節 馬赫-陳德干涉儀的架設 20 第3節 實驗步驟 21 第5章 實驗數據與討論 25 第1節 左右旋圓偏振於不同模態下的疊加結果 25 第2節 不同正交橢圓偏振於IGe4,4下的疊加結果 30 第6章 結論與未來展望 38 第1節 結論 38 第2節 未來展望 39 參考文獻 41 附錄 42 附錄A 實驗器材規格表 42 附錄B 數據處理的詳細計算流程 52 附錄C 數據處理的程式碼(Matlab) 55

    [1] A. Mair, A. Vaziri, G. Weihs and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [2] A. Vaziri, G. Weihs and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
    [3] M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
    [4] H. Huang, G. Milione, M. P. J. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. A. Nguyen, D. A. Nolan, M.-J. Li, M. Tur, R. R. Alfano and A. E. Willber, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).
    [5] N. Cvijetic, G. Milione, E. Ip and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5, 15422 (2015).
    [6] T. H. Lu, T. D. Huang, J. G. Wang, L. W. Wang and R. R. Alfano, “Generation of flower high-order Poincaré sphere laser beams from a spatial light modulator,” Sci. Rep. 6, 39657 (2016)
    [7] O. Svelto and D. C. Hanna, Principles of lasers (Springer, 1976).
    [8] 丁勝懋, 雷射工程導論 (中央圖書出版社,1986)。
    [9] M. A. Bandres and J. C. Gutiérrez-Vega, “Ince–Gaussian modes of the paraxial wave equation and stable resonators,” JOSA A 21, 873-880 (2004).
    [10]S.-C. Chu and K. Otsuka, “Numerical study for selective excitation of Ince-Gaussian modes in end-pumped solid-state lasers,” Opt. Express 15, 16506-16519 (2007).
    [11] I. Moreno, “Jones matrix for image-rotation prisms,” Appl. Opt. 43, 3373–3381 (2004).

    下載圖示 校內:2020-01-01公開
    校外:2020-01-01公開
    QR CODE