| 研究生: |
鍾佳玲 Chung, Chia-Ling |
|---|---|
| 論文名稱: |
利用CE-QUAL-W2模式模擬分析氣候變遷對於新山水庫水質衝擊 Simulation and Analyses of the Climate Change Impact on the Water Quality with CE-QUAL-W2 model in Hsin-Shan reservoir |
| 指導教授: |
張智華
Chang, Chih-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 207 |
| 中文關鍵詞: | 氣候變遷 、CE-QUAL-W2 、新山水庫 、水質模式 、水庫優養化 |
| 外文關鍵詞: | Climate change, CE-QUAL-W2, Hsinshan Reservoir, pattern scaling |
| 相關次數: | 點閱:127 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新水庫位於基隆市屬亞熱帶離槽水庫,主要供應基隆及台北都會區用水,由於位置處於溫暖潮濕且降雨量高,以及近年集水區域不當開發而暴雨沖刷營養鹽進入水庫供應水,且新山水庫人為操做進出水,導致近年春季和夏季,新山水庫發生優養化次數增加。
IPCC於2007年發表氣候變遷以經是個可觀察出來不可忽略的問題,且根據(Hsu and Chen, 2002) 對於台灣未來氣候變遷的研究顯示未來不論是雨季還是乾季100年內溫度將上升1.0 至1.4 °C,且對於未來季節性的水文循環更加強化,這將會造成未來水資源供應及對於水質轉變更是有潛在的衝擊,故針對此課題的研究需受關注。
對於IPCC 針對未來預估在氣溫及雨量的變化上可能會影響到河流流量,因此而導致污染物的流動和稀釋,由此可以說明對於水庫的從河川而來的進流會因氣候變遷改變水文循環而導致水質以及水量上的潛在風險,也因為氣溫升高轉變水庫內的化學反應改變水庫水質。
在亞熱帶地區水庫水質惡化的原因以藻類優養問題最為普遍,而其中又以藍綠藻產生的問題最為棘手。 2005 年環保署調查台灣11 座優養水庫之結果也顯示均有微囊藻藻華出現(郭等,2005)。有許多以前的研究表明,微囊藻藻華是最關心和急需解決的問題,在亞熱帶地區,而特別最關注的問題造成微囊藻藻華的條件。這些結果擴大且大部分集中在熱帶和亞熱帶海域的湖泊、水庫,大部分研究顯示優勢藻種為微囊藻,及使水體營養狀況改變,根據大部分研究數據及文獻表示在淡水環境如水庫、湖泊中,一年當中最溫暖的時期,藍綠藻往往依然能夠在水域內成為優勢藻種。 (Liu, 2011; Paerl, 1988; Paerl and Huisman, 2008; Paul, 2008) (Arheimer, 2005; Nõges, 2003; Newcombe, 2012; O’Neil, 2012; Paerl and Paul, 2012; Whitehead, 2009)
由於氣候變化遷是持續不斷的發生,並其對於水庫水資源的持續潛在風險,在新山水庫針對水資源的有效管理以及水質的控制將是不可忽略的議題。
以了解未來水質在氣候變遷下的改變,此論文使用CE-QUAL-W2 模式針對過去新山水庫的歷史資料架設此水庫模式,以及水庫的水理及水質參數的率定及驗證,本研究主要以2004年至2012年,這九年時期數據的收集來進行模式的率定及驗證。對於新山水庫過去的模擬主要是以2004-2008年做為率定年,2009-2012做為驗證年,針對其分別是由於在2009年時新山水庫改變進水策略,除了2009年以上層進水外其他年分皆以下層進水,2009年的進水策略引發營養鹽在上層供給大量藻類生長,該年藻華現象特別嚴重,因此以此年做為分水嶺。針對其模擬水理部分,率定及驗證的水位水溫模擬相當符合實際觀測,而水質部分針對溶氧、總磷、正磷酸鹽、氨氮、硝酸鹽氮、葉綠素a、懸浮固體物進行模擬及其分析結果也都與實測值相當接近。
氣候變遷情境模擬部分,針對已率定好的CE-QUAL-W2模式進行氣象因子的改變,來做為模擬未來氣候變遷下對於於水質的影響。
Hsinshan Reservoir is a subtropical off-channel reservoir located in Keelung city, which supplies water to both Keelung and Taipei metropolitan areas. The limnion layers in this subtropical reservoir turn over twice a year during the spring and fall, inducing eutrophication during the spring and summertime. The objective of this study was three-fold, to investigate possible impacts of climate change on water quality within a subtropical off-channel reservoir. First, develop a two dimensional (x- and z-axes) CE-QUAL-W2 (W2) model to simulate water temperature, dissolved oxygen, nutrients (total phosphorus, orthophosphate, ammonium-nitrogen and nitrate-nitrogen) and Chlorophyll-a (Chl-a). Water quality model results for short-term (2020 to 2039) and long-term (2080 to 2099) future projections were compared to baseline data collected from 2004-2012. Our second objective was to downscale monthly climate change data to a daily time-scale; downscaled data was then input into the W2 model for future projections. The third objective of this study was to assess and discuss implications of exceedance values provided by the W2 model.
Results showed that water surface temperature of Hsinshan Reservoir had a 53.4% probability to exceed 25°C, the temperature at which algal blooms frequently occur. Also, the water temperature profile showed that regardless of future projection, stratification during the summer will be more drastic than the baseline time period. These results suggest that temperature is the driving force affecting the solubility of dissolved oxygen. Decreased levels of dissolved oxygen in turn will increase the release of total phosphorous from sediment layer. In addition to this, total phosphorus and orthophosphate at both the water surface and reservoir bottom are projected to increase, regardless of short- or long-term future projection. Unlike to the baseline time period, total phosphorus at the water surface and reservoir stream bottom has a 22.4% and 2.8% probability to exceed 35 ug/L and 55 ug/L in the future, respectively. Total phosphorous levels at 35 ug/L is the threshold at which eutrophication is defined, thus suggesting water quality in the reservoir will worsen.
Thus, results from this study showed that water temperature, dissolved oxygen and total phosphorous are important water quality parameters affecting projected algal levels of Hsinshan Reservoir. Exceedance probabilities of Chl-a in the long-term future was 4.8 times higher than base period. High concentration of Chl-a, an indicator of eutrophication, is very likely to increase in all projected global climate models.
In conclusion, total phosphorus which affects levels chl-a is the nutrient that limits algal growth. Total phosphorous is a major concern for watershed managers of Hsinshan Reservoir. Stratification causes increased release of total phosphorous from the sediment at the reservoir bottom to the water surface. Mitigated stratification can reduce internal loading of total phosphorous. Therefore, controlling the quantity of total phosphorus internal loading can be an important way to improve reservoir’s water quality and preventing eutrophication.
Arheimer, B., Andréasson, J., Fogelberg, S., Johnsson, H., Pers, C.B., Persson, K., 2005. Climate Change Impact on Water Quality: Model Results from Southern Sweden. AMBIO: A Journal of the Human Environment 34, 559-566.
Arnell, N., 1998. Climate Change and Water Resources in Britain. Climatic Change 39, 83-110.
Arnell, N.W., 1999. Climate change and global water resources. Global Environmental Change 9, Supplement 1, S31-S49.
Badran, M.I., 2001. Dissolved Oxygen, Chlorophyll a and Nutrients: Seasonal Cycles in Waters of the Gulf of Aquaba, Red Sea. Aquatic Ecosystem Health & Management 4, 139-150.
Bowie, G.L., Mills, W.B., Porcella, D.B., Campbell, C.L., Pagenkopf, J.R., Rupp, G.L., Johnson, K.M., Chan, P.W.H., Gherini, S.A., Chamberlin, C.E., 1985. Rates, constants and kinetics formulations in surface water quality modelling, second ed. US Environmental Protection Agency.
Burford, M.A., Johnson, S.A., Cook, A.J., Packer, T.V., Taylor, B.M., Townsley, E.R., 2007. Correlations between watershed and reservoir characteristics, and algal blooms in subtropical reservoirs. Water research 41, 4105-4114.
Burn, D.H., 1994. Hydrologic effects of climatic change in west-central Canada. Journal of Hydrology 160, 53-70.
Carlson, R.E., 1977. A trophic state index for lakes1.
Chapra, S.C., 1977. Total phosphorus model for the Great Lakes. Journal of the Environmental Engineering Division 103, 147-161.
Chien, Y.-C., 2013. Analysis of the mechanism of microcystis domination and modeling its succession in a subtropical off-channel reservoir with a trajectory approach. National Taiwan University (Chienese thesis)
Council, W.W., 2006. Final Report of the 4th World Water Forum. National Water Commission of Mexico.
Cox, B.A., 2003. A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers. Science of The Total Environment 314–316, 335-377.
Davies, A.M., Gerritsen, H., 1994. An intercomparison of three-dimensional tidal hydrodynamic models of the Irish Sea. Tellus A 46, 200-221.
Debele, B., Srinivasan, R., Parlange, J.-Y., 2006. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Springer Science + Business Media B.V.
Delpla, I., Jung, A.V., Baures, E., Clement, M., Thomas, O., 2009. Impacts of climate change on surface water quality in relation to drinking water production. Environment International 35, 1225-1233.
Durance, I., Ormerod, S.J., 2007. Global Change Biology 13, 942.
El-Shehawy, R., Gorokhova, E., Fernandez-Pinas, F., del Campo, F.F., 2012. Global warming and hepatotoxin production by cyanobacteria: what can we learn from experiments? Water research 46, 1420-1429.
G.Tsakiris, D.Alexakis, 2012. Water quality models: An overview. European Water Resources Association (EWRA).
Grübler, A., Nakicenovic, N., Alcamo, J., Davis, G., Fenhann, J., Hare, B., Mori, S., Pepper, B., Pitcher, H., Riahi, K., 2004. Emissions scenarios: a final response. Energy & Environment 15, 11-24.
Hansen, J., Ruedy, R., Glascoe, J., Sato, M., 1999. GISS analysis of surface temperature change. Journal of Geophysical Research: Atmospheres 104, 30997-31022.
Hansen, J., Ruedy, R., Sato, M., Lo, K., 2010. GLOBAL SURFACE TEMPERATURE CHANGE. Reviews of Geophysics 48, RG4004.
Hsu, H.H., Chen, C.T., 2002. Observed and projected climate change in Taiwan. Meteorl. Atmos. Phys. 79, 87-104.
Hu, Z.-Z., Latif, M., Roeckner, E., Bengtsson, L., 2000. Intensified Asian Summer Monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophysical Research Letters 27, 2681-2684.
Huang‐Hsiung Hsu, 2011. Introduction of Taiwan climate change projection and information platform project (TCCIP).
IPCC 2007a. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)], ed. (Cambridge, United Kingdom and New York, NY, USA,), 996.
IPCC, 2007b. IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance ClimateChange Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp. 31.1, 594.
Jones, G.J., Poplawski, W., 1998. Understanding and management of cyanobacterial blooms in sub-tropical reservoirs of Queensland, Australia. Water Science and Technology 37, 161-168.
Jones, P.D., New, M., Parker, D.E., Martin, S., Rigor, I.G., 1999. Surface air temperature and its changes over the past 150 years. Reviews of Geophysics 37, 173-199.
Kang, I.S., Jin, K., Wang, B., Lau, K.M., Shukla, J., Krishnamurthy, V., Schubert, S., Wailser, D., Stern, W., Kitoh, A., Meehl, G., Kanamitsu, M., Galin, V., Satyan, V., Park, C.K., Liu, Y., 2002. Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dynamics 19, 383-395.
Kattenberg, A., Giorgi, F., Grassl, H., Meehl, G.A., Mitchell, J.F.B., R.J.Stouffer, Tokioka, T., Weaver, A.J., T.M.L.Wigley, 1996. The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change.
Kuo, J.-T., Lung, W.-S., Yang, C.-P., Liu, W.-C., Yang, M.-D., Tang, T.-S., 2006. Eutrophication modelling of reservoirs in Taiwan. Environmental Modelling & Software 21, 829-844.
Lal, M., T.Nozawa, S.Emori, H.Harasawa, K.Takahashi, M.Kimoto, Ouchi, A.A., T.Nakajima, 2001. Future climate change: Implications for Indian summer monsoon and its variability. current sience.
Leigh, C., Burford, M.A., Roberts, D.T., Udy, J.W., 2010. Predicting the vulnerability of reservoirs to poor water quality and cyanobacterial blooms. Water research 44, 4487-4496.
Liu, X., Lu, X., Chen, Y., 2011. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: An 11-year investigation. Harmful Algae 10, 337-343.
Lo, S.L., Kuo, J.T., Wang, S.M., 1996. Water quality monitoring network design of Keelung River, Northern Taiwan. Water Science and Technology 34, 49-57.
Lu, R.-S., Lo, S.-L., Hu, J.-Y., 1999. Analysis of reservoir water quality using fuzzy synthetic evaluation.
Luo, Y., Ficklin, D.L., Liu, X., Zhang, M., 2013. Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Science of The Total Environment 450–451, 72-82.
Markofsky, M., Harleman, D.R., 1973. Prediction of water quality in stratified reservoirs. Journal of the Hydraulics Division 99, 729-745.
Medema, G.J., Shaw, S., M, W., Snozzi, M., Morreau, A., Grabow, W., 2002. Catchment characterisation and source water quality. 48.
Mitchell, J.F.B., Manabe, S., Meleshko, V., Tokioka, T., 1990. The IPCC Scientific Assessment. Contribution of Working Group 1 to the first assessment report of the Intergovernmental Panel on Climate Change.
Mormul, R.P., Ferreira, F.A., Michelan, T.S., Carvalho, P., Silveira, M.J., Thomaz, S.M., 2010. Aquatic macrophytes in the large, sub-tropical Itaipu Reservoir, Brazil. Revista de Biologia Tropical 58, 1437-1452.
Mortimer, C.H., 1981. The Oxygen Content of Air Saturated Fresh Waters over Ranges of Tem-perature and Atmospheric Pressure of Limnological Interest. International Vereinigung Theo-retische and Angewandte Limnologie 22, 2-23.
Nõges, P., Nõges, T., Tuvikene, L., Smal, H., Ligeza, S., Kornijów, R., Peczula, W., Bécares, E., Garcia-Criado, F., Alvarez-Carrera, C., Fernandez-Alaez, C., Ferriol, C., Miracle, R., Vicente, E., Romo, S., Van Donk, E., van de Bund, W., Jensen, J., Gross, E., Hansson, L.-A., Gyllström, M., Nykänen, M., de Eyto, E., Irvine, K., Stephen, D., Collings, S., Moss, B., 2003. Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. Hydrobiologia 506-509, 51-58.
Nakicenovic, N., Alcamo, J., Davis, G., De Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Griibler, A., Jung, T.Y., Kram, T., 2000. Emissions scenarios.
Nations, U., 2002. Plan of Implementation of the World Summit on sustainable development.
Nations, U., 2006. World Water Development Report 2: Water, a shared responsibility.
Newcombe, G., Chorus, I., Falconer, I., Lin, T.F., 2012. Cyanobacteria: impacts of climate change on occurrence, toxicity and water quality management. Water research 46, 1347-1348.
O’Neil, J.M., Davis, T.W., Burford, M.A., Gobler, C.J., 2012. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313-334.
Paerl, H.W., 1988. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology & Oceanography 33, 823-847.
Paerl, H.W., Huisman, J., 2008. Climate: Blooms like it hot. Science 320, 57-58.
Paerl, H.W., Huisman, J., 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1, 27-37.
Paerl, H.W., Paul, V.J., 2012. Climate change: links to global expansion of harmful cyanobacteria. Water research 46, 1349-1363.
Paeth, H., Scholten, A., Friederichs, P., Hense, A., 2008. Uncertainties in climate change prediction: El Niño-Southern Oscillation and monsoons. Global and Planetary Change 60, 265-288.
Paul, V.J., 2008. Global warming and cyanobacterial harmful algal blooms. Advances in experimental medicine and biology 619, 239-257.
Quesada, A., Moreno, E., Carrasco, D., Paniagua, T., Wormer, L., Hoyos, C.d., Sukenik, A., 2006. Toxicity of Aphanizomenon ovalisporum (Cyanobacteria) in a Spanish water reservoir. European Journal of Phycology 41, 39-45.
Reckhow, K.H., 1988. EMPIRICAL MODELS FOR TROPHIC STATE IN SOUTHEASTERN U.S. LAKES AND RESERVOIRS1. JAWRA Journal of the American Water Resources Association 24, 723-734.
Robarts, R.D., Zohary, T., 1987. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. New Zealand Journal of Marine and Freshwater Research 21, 391-399.
Schindler, D.W., Kling, H., Schmidt, R.V., Prokopowich, J., Frost, V.E., Reid, R.A., Capel, M., 1973. Eutrophication of Lake 227 by Addition of Phosphate and Nitrate: the Second, Third, and Fourth Years of Enrichment, 1970, 1971, and 1972. Journal of the Fisheries Research Board of Canada 30, 1415-1440.
Schindler, J.E., 1971. Food Quality and Zooplankton Nutrition. Journal of Animal Ecology 40, 589-595.
Steele, J., 1966. NOTES ON SOME THEOEETICAL PKOBLEMS IN PKODUCTION ECOLOGY. Primary productivity in aquatic environments, 383.
Streeter, H.W., Phelps, E.B., 1958. A Study of the Pollution and Natural Purification of the Ohio River.
Thomas M. Cole, Edward M. Buchak 1995. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 2.0 User Manual.
Towler, E., Rajagopalan, B., Yates, D., Rodriguez, A., Scott Summers, R., 2013. Integrated Approach to Simulate Stream Water Quality for Municipal Supply under a Changing Climate. Journal of Environmental Engineering 139, 1432-1440.
Tsai, A.-Y., Huang, W.-C., 2011. Impact of Climate Change on Water Resources in Taiwan
Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., 2000. Global Water Resources Vulnerability from Climate Change and Population Growth. Science 289, 284-288
Vollenweider, R.A., 1968. Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters, with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication. Tech. Rept. OECD, DAS/CSI/68.27,.
Vollenweider, R.A., 1976. Advances in Defining Critical Loading Levels for Phosphorus in Lake Eutrophication. Mem. Inst. Ital. Idrobiol. 33, 53-83.
Wang, Q., Li, S., Jia, P., Qi, C., Ding, F., 2013. A Review of Surface Water Quality Models. The Scientific World Journal 2013, 7.
Wetzel, R.G., 2001. Limnology: Lake and River Ecosystems. Academic Press.
Whitehead, P., Beck, B., O'Connell, E.O., 1981. A systems model of streamflow and water quality in the Bedford Ouse river system. II. Water quality modelling. Water research 15, 1157-1171.
Whitehead, P., P, Young, P., Hornberger, G., 1979. A systems model of stream flow and water quality in the Bedford-Ouse River. I. Stream flow modelling. Water research 13, 1155-1169.
Whitehead, P.G., Wilby, R.L., Battarbee, R.W., Kernan, M., Wade, A.J., 2009. A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal 54, 101-123.
Whitehead’, P.G., Williams, R.J., Lewis2, D.R., 1997. Quality simulation along river systems (QUASAR): model theory and development
Wilhelm, S., Adrian, R., 2008. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshwater Biology 53, 226-237.
Wu, J.-Z. 2006. Research projects for purify water quality to control eutrophication by ecological engineering methods - food chain approach purify water quality (Chinese report)
Wu, S.-C., Wu, J.-T., Change, M.-l. 2009. Correlation of algae eutrophication indicators and water quality in Hsin-Shan Reservoir report - 2009. In Correlation of algae eutrophication indicators and water quality in Hsin-Shan Reservoir report. (Chinese report)
Wu, S.-C., Wu, J.-T., Change, M.-l. 2010. Correlation of algae eutrophication indicators and water quality in Hsin-Shan Reservoir report -2010. In Correlation of algae eutrophication indicators and water quality in Hsin-Shan Reservoir report. (Chinese report)
Wu, S.-C., Wu, J.-T., Change, M.-l. 2011. Correlation of algae eutrophication indicators and water quality in Hsin-Shan Reservoir -2011. In Correlation of algae eutrophication indicators and water quality in Hsin-Shan Reservoir, Wu, S.-C., Wu, J.-T., eds. (Taiwan water corporation). (Chinese report)
Xu, Z., Godrej, A.N., Grizzard, T.J., 2007. The hydrological calibration and validation of a complexly-linked watershed–reservoir model for the Occoquan watershed, Virginia. Journal of Hydrology 345, 167-183.
Yang, C.-H., 2007. Phosphorus Flux of Reservoir Sediments-- Hsin-Shan and Shih-man Reservoir. National Taiwan University (Chienese thesis)
Yang, C., 2002. The Survey of Mountain Recreation Resources in Hohuan Mountain. 16.
Zhang, Y., Prepas, E.E., 1996. Regulation of the dominance of planktonic diatoms and cyanobacteria in four eutrophic hardwater lakes by nutrients, water column stability, and temperature. Canadian Journal of Fisheries and Aquatic Sciences 53, 621-633.