簡易檢索 / 詳目顯示

研究生: 陳偉杰
Chen, Wei-Chieh
論文名稱: 結合分子模擬與高解析背向散射電子繞射技術探討奈米薄膜壓痕塑性變形機制
The investigation on the plastic deformation mechanism of the nanofilm under indentation using molecular simulation and high-resolution EBSD
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 141
中文關鍵詞: 分子動力學奈米壓痕行為壓痕應力-應變曲線差排滑移晶格旋轉高解析度背向散射電子繞射技術
外文關鍵詞: Molecular Dynamics, Nanoindentation behavior, Indentation stress-strain curve, Dislocation slip, Lattice rotation, High-Resolution Electron Backscatter Diffraction (HR-EBSD)
相關次數: 點閱:30下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在結合分子動力學模擬與高解析度背向散射電子繞射技術(HR-EBSD),探討單晶銀奈米薄膜在奈米壓痕下的變形行為,透過經典赫茲接觸定律與應力-應變曲線的轉換求出材料的楊氏模數及降伏應力。並且分析不同晶格方向、壓頭速度及溫度對材料楊氏模數、初塑性應力與變形行為的影響,也會透過可視化軟體觀察模型壓痕後的微結構變化以探討塑性變形所造成的影響,最後會結合模擬與實驗結果,深入了解差排滑移產生對於高解析度背向散射電子繞射技術(HR-EBSD)測量上的影響。
    研究結果顯示,[0 0 1]方向的楊氏模數最低且初塑性應力最小;壓痕速度升高會提升楊氏模數與pop-in點負載,但加劇應力-應變曲線的震盪;溫度升高則降低楊氏模數與初塑性應力。而塑行變形的產生(如差排滑移和疊層缺陷)會對材料的應力-應變值造成不同的影響。也特別分析差排滑移對周圍原子的影響,可發現會在各方向上有約20Å的影響範圍並引發顯著的晶格旋轉,且分析的旋轉軸向量表明,差排滑移系統的晶格旋轉方向與壓痕過程密切相關。此外,利用HR-EBSD技術測量圖譜變形並與分子模擬數據進行比較,可發現在低旋轉角度測量中具有較高準確性,但在差排滑移產生後,會明顯在測量上出現誤差。透過結合模擬數據的比較,能更準確反映HR-EBSD對於局部區域旋轉與應變值的測量情況。

    This study aims to combine molecular dynamics (MD) simulations with high-resolution electron backscatter diffraction (HR-EBSD) techniques to investigate the deformation behavior of single-crystal silver (Ag) thin films under nanoindentation. The effects of different crystallographic orientations, indentation velocities, and temperatures on the material's deformation behavior are analyzed. Microstructural changes after indentation are examined using visualization software to explore the impact of plastic deformation. Finally, the influence of dislocation slip on HR-EBSD measurements is further explored.
    The results show that different conditions such as crystal orientation, indenter speed, and temperature significantly affect the material's Young's modulus, initial plastic depth, initial plastic strain, and initial plastic stress. Slip deformation leads to a sharp drop in stress, while stacking fault structures show stress oscillations. Analyzing the effect of dislocation slip on surrounding atoms reveals that significant lattice rotation occurs. Comparisons between HR-EBSD measurements and MD simulation data reveal significant measurement errors after dislocation slip occurs. By integrating simulation data, HR-EBSD measurements of local lattice rotation and strain values can be more accurately reflected.

    摘要 III Extended Abstract IV 誌謝 XX 目錄 XXI 表目錄 XXV 圖目錄 XXVI 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.2.1奈米壓痕實驗及模擬 2 1.2.2高解析度背向散射電子繞射技術(HR-EBSD) 9 1.3動機與目的 11 1.4論文架構 12 第二章 基礎理論與研究方法 13 2.1分子動力學理論 13 2.1.1基本理論 13 2.1.2勢能函數 14 2.1.3週期性邊界條件 15 2.1.4系綜 18 2.1.5初始條件 18 2.1.6運動方程式 19 2.1.7 Velocity-Verlet演算法 20 2.2參數分析方法 21 2.2.1差排分析法(Dislocation Extraction Algorithm, DXA) 21 2.2.2原子級應變 22 2.2.3原子級應力 24 2.2.4原子晶格方位 25 2.3金屬變形理論 28 2.3.1 Schmid’s law 28 2.4高解析度背向散射電子繞射測量(HR-EBSD) 29 2.4.1數位影像交互相關係數法(DIC) 29 2.4.2以電子繞射菊池圖量測應變與晶體轉動 30 第三章 模擬設定與結果討論 35 3.1原子模型設定 35 3.2奈米壓痕模擬流程設置 36 3.3奈米壓痕結果與討論 37 3.3.1負載-深度曲線 37 3.3.2赫茲接觸理論 38 3.3.3應力-應變曲線 38 3.3.4表面晶格方向效應 40 3.3.5壓頭速度效應 44 3.3.6溫度效應 49 3.4微觀分析塑性變形影響 53 3.4.1差排密度 53 3.4.2表面晶格方向效應 54 3.4.3壓頭速度效應 64 3.4.4溫度效應 69 3.5差排對有效應變的影響範圍 73 3.5.1平面xy方向影響範圍 73 3.5.2深度z方向影響範圍 75 第四章 奈米壓痕引起的晶格旋轉 82 4.1滑移系統分析 82 4.1.1初塑性滑移系統區域 82 4.1.2差排所導致之晶體旋轉 88 4.1.3差排對旋轉的影響範圍 92 4.2 HR-EBSD測量結果與討論 96 4.2.1單軸拉伸模型 96 4.2.2奈米壓痕模型 99 第五章 結論與未來展望 104 5.1結論 104 5.2未來展望 106 參考文獻 107

    [1]Y. Wang, D. Raabe, C. Kluber and F. Roters, "Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals," Acta Materialia, vol. 52, pp. 2229-2238, 2004.
    [2]Y. Liu, S. Varghese, J. Ma, M. Yoshino, H. Lu, & R. Komanduri, "Orientation effects in nanoindentation of single crystal copper, " International Journal of Plasticity, vol. 24, pp. 1990-2015, 2008.
    [3]F. Y. Huang, "Investigation of Stacking-Fault Energy on Indentation Deformation Behavior in Single Crystals of Ni and Ag," Doctoral thesis, 2021.
    [4]T. H. Fang, S. R. Jian, & D. S. Chuu, "Molecular dynamics analysis of effects of velocity and loading on the nanoindentation, " Japanese journal of applied physics, vol. 41, pp. 1328, 2002.
    [5]G. C. Lu, Y. J. Su, W. Y. Chu, & L. J. Qiao, "Molecular dynamics simulation of plastic deformation during nanoindentation," Chinese Journal of Engineering, vol. 34, pp. 898-902, 2012.
    [6]C. Qiu, P. Zhu, F. Fang, D. Yuan, & X. Shen, "Study of nanoindentation behavior of amorphous alloy using molecular dynamics, " Applied surface science, vol. 305, pp. 101-110, 2014.
    [7]J. Li, J. Guo, H. Luo, Q. Fang, H. Wu, L. Zhang, & Y. Liu, "Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations, " Applied Surface Science, vol. 364, pp. 190-200, 2016.
    [8]M. Bagheripoor and R. Klassen, "The effect of crystal anisotropy and pre-existing defects on the incipient plasticity of FCC single crystals during nanoindentation," Mechanics of Materials, vol. 143, pp. 103311, 2020.
    [9]J. Huang, Y. Liu, X. Yu, Y. Huang, G. Liu, Z. Huang, & D. Fan, "Nano mechanical property analysis of single crystal copper using Berkovich nano indenter and molecular dynamic simulation, " Computational Materials Science, vol. 188, pp. 110237, 2021.
    [10]H. T. Luu, S. L. Dang, T. V. Hoang, & N. Gunkelmann, "Molecular dynamics simulation of nanoindentation in Al and Fe: On the influence of system characteristics, " Applied Surface Science, vol. 551, pp. 149221, 2021.
    [11]Y. T. Lin, S. C.Hsiao, I. L. Chang, & J. C. Kuo, "Atomistic Understanding of the Competition between Dislocation and Twinning in Silver under Nanoindentation, " Advanced Engineering Materials, vol. 25(17), pp. 2300320, 2023.
    [12]I. Chasiotis, & W. G. Knauss, "A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy, " Experimental Mechanics, vol. 42, pp 51-57, 2002.
    [13]A. J. Wilkinson, G. Meaden, & D. J. Dingley, "High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity, " Ultramicroscopy, vol. 106(4-5),pp. 307-313, 2006.
    [14]T. B. Britton, & A. J. Wilkinson, "Measurement of residual elastic strain and lattice rotations with high resolution electron backscatter diffraction, " Ultramicroscopy, vol. 111(8), pp. 1395-1404, 2011.
    [15]D. Wallis, L. N. Hansen, T. B. Britton, & A. J. Wilkinson, "High‐angular resolution electron backscatter diffraction as a new tool for mapping lattice distortion in geological minerals, " Journal of Geophysical Research: Solid Earth, vol. 124(7), pp. 6337-6358, 2019.
    [16]B. J. Alder and T. E. Wainwright, "Studies in molecular dynamics. I. General method," The Journal of Chemical Physics, vol. 31, no. 2, pp. 459-466, 1959.
    [17]J. E. Jones, "On the determination of molecular fields.—II. From the equation of state of a gas," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 106, no. 738, pp. 463-477, 1924.
    [18]M. S. Daw and M. I. Baskes, "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals," Physical Review B, vol. 29, no. 12, pp. 6443, 1984.
    [19]G. S. Grest, B. Dünweg, and K. Kremer, "Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles," Computer Physics Communications, vol. 55, no. 3, pp. 269-285, 1989.
    [20]F. Reif, "Fundamentals of statistical and thermal physics," Waveland Press, 2009.
    [21]L. Verlet, "Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules," Physical Review, vol. 159, no. 1, pp. 98, 1967.
    [22]W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of Chemical Physics, vol. 76, no. 1, pp. 637-649, 1982.
    [23]J. Haile, I. Johnston, A. J. Mallinckrodt and S. McKay, "Molecular dynamics simulation: Elementary methods," Computers in Physics, vol. 7, no. 6, pp. 625-625, 1993.
    [24]F. C. Frank, "LXXXIII. Crystal dislocations.—Elementary concepts and definitions," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 42, pp. 809-819, 1951.
    [25]A. Stukowski, V. V. Bulatov and A. Arsenlis, "Automated identification and indexing of dislocations in crystal interfaces," Modelling and Simulation in Materials Science and Engineering, vol. 20, no. 8, pp. 085007, 2012.
    [26]F. Shimizu, S. Ogata and J. Li, "Theory of shear banding in metallic glasses and molecular dynamics calculations," Materials Transactions, vol. 48, no. 11, pp. 2923-2927, 2007.
    [27]A. T. Fenley, H. S. Muddana, & M. K. Gilson, "Calculation and visualization of atomistic mechanical stresses in nanomaterials and biomolecules, " PLoS One, vol. 9(12), pp. e113119, 2014.
    [28]M. DeBerg, "Computational geometry: algorithms and applications, " Springer Science & Business Media, 2000.
    [29]D. J. Srolovitz, "Theory of grain boundary migration in polycrystalline materials, " Journal of Materials Science, vol. 16(4), pp. 1075-1090, 1981.
    [30]M. D. Shuster, "A survey of attitude representations. Navigation, " vol. 8(9), pp. 439-517, 1993.
    [31]J. Kuipers, "Quaternions and Rotation Vectors in Robotics." Journal of Robotics and Autonomous Systems, 1999.
    [32]E. Schmid and W. Boas, "Kristallplastizität: Mit besonderer berücksichtigung der metalle," Springer press, 1935.
    [33]K. Troost, P. van der Sluis, and D. Gravesteijn, "Microscale elastic‐strain determination by backscatter Kikuchi diffraction in the scanning electron microscope, " Applied Physics Letters, pp. 1110-1112, 1993.
    [34]A.J. Wilkinson, "Measurement of elastic strains and small lattice rotations using electron back scatter diffraction, " Ultramicroscopy, vol. 62: pp. 237-247, 1996.
    [35]S. Chang, J. Warren, D. Hong, and F. P. Chiang, "Testing mechanical properties of EPON SU-8 with SIEM, " SEM Annual Conference & Exposition on Experimental and Applied Mechanics. Milwaukee, WI; USA, 2002.
    [36]K. L. Johnson, "Contact mechanics," Cambridge University Press, 1987.
    [37]D. Tabor, "The hardness of metals," Oxford: Clarendon Press, 1951.
    [38]B. Xu and X. Chen, "Determining engineering stress-strain curve directly from the load–depth curve of spherical indentation test," Journal of Materials Research, vol. 25, pp. 2297-2307, 2010.
    [39]S. R. Kalidindi and S. Pathak, "Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves," Acta Materialia, vol. 56, pp. 3523-3532, 2008.
    [40]S. Pathak, J. Shaffer and S. R. Kalidindi, "Determination of an effective zero-point and extraction of indentation stress-strain curves without the continuous stiffness measurement signal," Scripta Materialia, vol. 60, pp. 439-442, 2009.
    [41]Y. Chen, B. L. Dorgan, , D. N. McIlroy, & D. Eric Aston, "On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires," Journal of applied physics, 100(10), 2006.

    無法下載圖示 校內:2030-02-03公開
    校外:2030-02-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE