| 研究生: |
林鉅文 Lin, Jyu-Wun |
|---|---|
| 論文名稱: |
十六氟銅苯二甲藍薄膜性質與有機薄膜電晶體電性之研究 Studies of thin-film structural and electrical properties of F16CuPc-based thin-film transistors |
| 指導教授: |
鄭弘隆
Cheng, Horng-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 高分子絕緣材料 、有機薄膜電晶體 、十六氟銅苯二甲藍 |
| 外文關鍵詞: | F16CuPc, OTFT, Polymer insulator materials |
| 相關次數: | 點閱:59 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究以十六氟銅苯二甲藍(Copper hexadecafluoro- phthalocyanine, F16CuPc)作為主動層之有機薄膜電晶體電特性與薄膜性質。第一部份,採用下閘極具有氧化銦錫底部接觸元件結構,將F16CuPc成長於不同溫度的二氧化矽介電層表面,研究基板溫度對元件電性與遅滯現象的影響。第二部份,將F16CuPc成長於不同高分子修飾層上,研究高分子修飾層對F16CuPc薄膜結構的影響。
第一部份,改變基板溫度從30 ℃至180 ℃,成長F16CuPc薄膜700 Å,並製作底部接觸元件,利用標準場效電晶體元件薄層電荷模型,計算元件電性參數,發現成長於基板120 ℃的元件有最佳載子漂移率、最大的開關電流比,與最低的次臨界斜率。我們利用正反向廻圈方式量測電性遲滯曲線,發現成長於基板120 ℃的元件,有較小的遲滯效應與較小的載子漂移率變化量,顯示F16CuPc在基板溫度120 ℃左右有最穩定薄膜結構,較適合載子傳輸。從X光薄膜繞射光譜與紫外-可見光吸收光譜分析的結果,並無法合理解釋載子於各種F16CuPc薄膜內的傳輸行為。然而,拉曼散射光譜研究薄膜微結構,我們發現成長於120 ℃基板的F16CuPc薄膜有較佳的分子結構與微結構,有利載子傳輸,因此元件電性較佳。
第二部份,我們利用接觸角量測、X光薄膜繞射光譜、吸收光譜、與拉曼光譜研究F16CuPc成長於各種高分子修飾層表面的薄膜結構特性。由接觸角量測高分子與F16CuPc薄層的表面自由能,並計算高分子修飾層與F16CuPc層間附著力,我們建議聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA)與聚苯乙烯(polystyrene, PS)表面適合F16CuPc的成長。我們進一步分析F16CuPc成長在各種基板的薄膜結構,結果指出成長在有機高分子修飾層上的F16CuPc薄膜有較佳的品質,成長於二氧化矽表面則明顯較差。參照本實驗數據,選擇適合F16CuPc的修飾層材料為PMMA、PS、及聚乙烯醇(poly(vinyl alcohol))。
In this study, the structural and electrical transport properties of n-type copper hexadecafluorophthalocyanine (F16CuPc) thin-films as an active layer were investigated using organic thin films transistors (OTFTs). In part 1, we studied the influence of substrate temperature during thin-film growth of F16CuPc on the electrical characteristics and hysteresis effects in OTFTs using indium-tin-oxide (ITO) bottom contact and bottom gate device configuration. In part 2, we studied the effects of polymeric modification layers on the F16CuPc film growth and structural properties.
In part 1, we have fabricated OTFTs using the F16CuPc films which were thermally evaporated on different temperature SiO2 surfaces ranging from 30 to 180 ℃. The device characteristics were analyzed using the standard charge-sheet MOSFET model equation. These F16CuPc films were characterized by X-ray diffraction (XRD), absorption spectroscopy, and Raman spectroscopy. When the substrate temperature was set to 120 ℃, the corresponding F16CuPc-based OTFTs exhibit the highest field-effect mobility, the largest modulated on/off current ratio, the lowest subthreshold swing, and the smaller hysteresis loops. XRD and absorption spectra results could not give a reasonable explanation of the devices’ performance of F16CuPc-based OTFTs. In contrast, Raman analysis results indicated F16CuPc grown on 120 ℃ substrate has a more homogeneous molecular structure and microstructure associated with lower reorganization, thus device performance.
In part 2, the structural properties of F16CuPc films grown on various polymeric modification layers were investigated using contact angle meter, XRD, absorption spectroscopy, and Raman spectroscopy. Upon analyzing the surface free energy and interfacial adhesive force between F16CuPc and polymeric surfaces, we suggest that polymethylmethacrylate (PMMA) and polystyrene (PS) are the effective modification layers for the growth of F16CuPc film. The thin film structures of F16CuPc on polymeric modification layers, e.g. PMMA, PS, and poly(vinyl alcohol) are better than that on native SiO2 surfaces.
[1] A. Tsumura, H. Koezuka and T. Ando, “Macromolecular electronic device: field-effect transistor with a polythiophene thin film” Appl. Phys. Lett., 1986, 49, 1210-1212.
[2] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, “Light-emitting diodes based on conjugated polymers” Nature, 1990, 347, 539-541.
[3] N. S. Sariciftci, D. Braun,C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells” Appl. Phys. Lett., 1993, 62, 585-587.
[4] 陳金鑫,黃孝文,“OLED有機電激發光材料與元件”,五南圖書,台北,2005。
[5] J. E. Lilienfeld, US Patenet 1745175, 1930.
[6] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics” Adv. Mater., 2002, 14, 99-117.
[7] G. Horowitz, “Organic field-effect transistors” Adv. Mater., 1998, 10, 365-377.
[8] Y. Sun, Y. Liu and D. Zhu, “Advances in organic field-effect transistors” J. Mater. Chem., 2005, 15, 53-65.
[9] C. R. Newman, C. D. Frisbie, D. A. da S. Filho,J. L. Br´e das, P. C. Ewbank and K. R. Mann, “Introduction to organic thin film transistors and design of n-channel organic semiconductors” Chem. Mater., 2004, 16, 4436-4451.
[10] S. M. Sze, “Semiconductor devices:physics and technology 2nd edition” John Wiley & Sons, Inc, New York, 2001.
[11] G. Guillaud, M. A. Sadoun, M. M. Simon and M. Bouvet, “Field-effect transistors based on intrinsic molecular semiconductors” Chem. Phys. Lett., 1990, 167, 503-506.
[12] A. R. Brown, D. M. de Leeuw, E. J. Lous and E. E. Havinga,“Organic n-type field-effect transistor” Synth. Met., 1994, 66, 257-261.
[13] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming , Appl. Phys. Lett., 1995, 67, 121-123.
[14] Z. Bao, A. J. Lovinger and A. Dodabalapur, “Organic field-effect transistors with high mobility based on copper phthalocyanine” Appl. Phys. Lett., 1996, 69, 3066-3068.
[15] Z. Bao, A. J. Lovinger and A. Dodabalapur, “Highly ordered vacuum-deposited thin films of metallophthalocyanines and their applications in field-effect transistors” Adv. Mater., 1997, 9, 42-44.
[16] K. Y. Law, “Organic photoconductive materials: recent trends and developments” Chem. Rev., 1993, 93, 449-486.
[17] H. S. Oh, D. H. Chung, C. H. Kim, J. U. Lee, S. W. Hur, S. K. Kim, T. W. Kim and J. W. Park, “Organic photovoltaic effects using CuPc/C60 layer” Mol. Cryst. Liq. Cryst., 2004, 424, 225–232.
[18] Z. Bao, A. J. Lovinger and J. Brown, “New air-stable n-channel organic thin film transistors” J. Am. Chem. Soc., 1998, 120, 207-208.
[19] C. Shen, A. Kahn and J. Schwartz, “Role of metal–molecule chemistry and interdiffusion on the electrical properties of an organic interface: The Al–F16CuPc case” J. Appl. Phys., 2001, 90, 6236-6242.
[20] S. Hoshino, S. Nagamatsu, M. Chikamatsu, M. Misaki, Y. Yoshida, N. Tanigaki and K. Yase, “Device performance of an n-channel organic thin-film transistor with LiF/Al bilayer source and drain electrodes” Jpn. J. Appl. Phys., 2002, 41, 808-810.
[21] E. Kol’tsov, T. Basova, P. Semyannikov and I. Igumenov, “Synthesis and investigations of copper hexadecafluorophthalocyanine CuPcF16” Mater. Chem. Phys., 2004, 86, 222-227.
[22] J. R. Ferraro, K. Nakamoto and C. W. Brown, “Introductory raman spectroscopy” 2nd edition, Academic Press, Boston , 2003, p. 17
[23] R. Ye, M. Baba, Y. Ohishi, K. Mori and K. Suzuki, “On the correlation between morphology and electronic properties of fluorinated copper phthalocyanine (F16CuPc) thin films” Mol. Cryst. Liq. Cryst., 2006, 444, 203-210.
[24] D. G. de Oteyza, E. Barrena, J. O. Osso´, S. Sellner and H. Dosch, “Thickness-dependent structural transitions in fluorinated copper-phthalocyanine (F16CuPc) films” J. Am. Chem. Soc., 2006, 128, 15052-15053.
[25] Y. Imanishi, S. Hattori, A. Kakuta and S. Numata, “Direct observation of an organic superlattice structure” Phys. Rev. Lett., 1993, 71, 2098-2101.
[26] T. Manaka, K. Taguchi, K. Ishikawa and H. Takezoe, “Highly aligned α-type copper phthalocyanine formed on rubbed polyimide alignment layer” Jpn. J. Appl. Phys., 2000, 39, 4910-4911.
[27] A. S. Davydov, “Theory of molecular exitons” Nauka, Moscow, 1968.
[28] T. Basova, E. Kol’tsov, A. Hassan, A. Tsargorodskaya, A. Ray and I. Igumenov, “Thin films of copper hexadecafluorophthalocyanine CuPcF16” Phys. Stat. Sol. (b), 2005, 242, No. 4, 822–827.
[29] V. Coropceanu, M. Malagoli, D. A. da Silva Filho, N. E. Gruhn, T.G. Bill and J. L. Bre´das, “Hole- and electron-vibrational couplings in oligoacene crystals:intramolecular contributions” Phys. Rev. Lett., 2002, 89, 275503(1-4).
[30] 顏偵翔,“十六氟銅苯二甲藍有機薄膜電晶體電傳輸性質之研究”,成功大學電機工程研究所碩士論文民國九十六年一月。
[31] J. Wang, H. Wang, X. Yan, H. Huang, D. Jin, J. Shi, Y. Tang and D. Yan, “Heterojunction ambipolar organic transistors fabricated by a two-step vacuum-deposition process” Adv. Funct. Mater., 2006, 16, 824–830.
[32] J. Shi, H. Wang, D. Song, H. Tian, Y. Geng and D. Yan, “N-channel, ambipolar, and p-channel organic heterojunction transistors fabricated with various film morphologies” Adv. Funct. Mater., 2007, 17, 397–400.
[33] J. N. Israelachvili, “Intermolecular and surface forces” 2nd edition, Academic Press, London, UK, 1992.