簡易檢索 / 詳目顯示

研究生: 陳君佩
Chen, Chun-Pei
論文名稱: 數位工廠的實現:FlexSim軟體於TFT-LCD Array廠之產能運用-以I公司為例
The Realization of Digital Factory: An Application of TFT-LCD Array Fab Using FlexSim Software-A Case Study of Company I
指導教授: 謝中奇
Hsieh, Chung-Chi
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 58
中文關鍵詞: 電子紙顯示器TFT-LCDFlexSim數位工廠離散事件模擬產能瓶頸
外文關鍵詞: EPD, TFT-LCD, FlexSim, Digital Factory, Discrete Event Simulation, Capacity Bottleneck
相關次數: 點閱:63下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以TFT-LCD產業的Array廠為例,探討如何應用FlexSim離散事件模擬軟體實現數位工廠,提升生產效率與產能運用。隨著市場需求趨於多樣化,競爭日益激烈,個案廠自傳統TFT-LCD生產線轉型專注於電子紙顯示器(Electronic Paper Display, EPD)的製造。然而,由於電子紙顯示器的製程較為複雜,生產週期較TFT-LCD延長1.5至3倍,影響整體生產效率。
    為解決此問題,個案擬導入新製程,透過減少黃光製程的PEP數(曝光次數),以提升生產效率並降低碳排放,達成永續發展目標。研究運用FlexSim模擬軟體建構數位工廠模型,依據實際生產參數模擬不同產品類別的生產場景,並以現況與三種設計情境分析新製程導入對整體產能的影響。結果顯示,新製程可顯著提升黃光製程的產能,但在部分情境下,產能瓶頸轉移至乾蝕刻製程,進一步限制了整體產能提升幅度。
    研究結果顯示,透過調整產品配置基準、精進製程參數及設備投資規劃,可逐步解決瓶頸轉移問題,並提高生產效率。同時,亦證明FlexSim軟體作為數位工廠工具的有效性,不僅可模擬實際生產情境,還能作為企業進行生產決策與產能管理的重要輔助工具。本研究成果可提供TFT-LCD及電子紙顯示器等產業在數位工廠轉型方面之參考,進一步推動製造業向智慧化與高效能生產邁進。

    This study investigates the application of FlexSim discrete event simulation software to implement a digital factory and optimize production processes and capacity utilization, using the TFT-LCD industry's Array Fab as a case study. As market demand diversifies and competition intensifies, the case factory transitioned from traditional TFT-LCD manufacturing to electronic paper display (EPD) production. However, due to the complexity of the EPD manufacturing process, the production cycle was extended by 1.5 to 3 times compared to TFT-LCD, with the photolithography process (exposure machines) becoming a major bottleneck that constrained overall production efficiency.
    To address this issue, a new process was introduced to reduce the number of photolithography exposure steps (PEP count), thereby improving production efficiency and reducing carbon emissions to achieve sustainability goals. This study utilized FlexSim to construct a digital factory model, simulating various production scenarios based on real-world parameters and analyzing four different conditions to evaluate the impact of the new process on overall capacity. The results demonstrated that the new process significantly improved the capacity of the photolithography stage; however, in certain scenarios, the bottleneck shifted to the dry etching process, further limiting overall capacity improvements.
    Findings indicate that optimizing product configurations, refining process parameters, and strategically planning equipment investments can help mitigate bottleneck shifts and enhance production efficiency. This study confirms the effectiveness of FlexSim as a digital factory tool, capable of not only simulating real production scenarios but also serving as a valuable decision-making and capacity management aid for enterprises. The research findings provide insights for the TFT-LCD and EPD industries in their digital transformation efforts, contributing to the advancement of smart and high-efficiency manufacturing.

    摘要 i Extended Abstract ii 誌謝 v 目錄 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍與限制 4 1.4 研究架構流程 4 第二章 文獻回顧 6 2.1 TFT-LCD薄膜電晶體液晶顯示器 6 2.2 電子紙顯示器之探討 10 2.2.1 電子紙顯示器介紹 10 2.2.2 未來的電子紙 12 2.2.3 個案產品類別 13 2.3 離散事件模擬軟體 16 2.4 FlexSim智慧工廠虛實整合系統 17 2.4.1 FlexSim的應用 18 2.4.2 FlexSim的主要功能與模組 19 2.4.3 FlexSim之優勢 19 2.4.4 FlexSim模型驗證 20 第三章 研究方法 21 3.1 數位工廠模型建立 22 3.1.1 主製程站點與生產流程 22 3.1.2 模型建立條件與限制 23 3.1.3 數位工廠的實現-模型建立 24 3.1.4 模型驗證 27 3.2 模擬方法設計 29 3.2.1 研究假設條件 29 3.2.2 研究問題描述 30 3.2.3 情境假設 32 3.2.4 參數設定與模擬 32 第四章 結果分析 34 第五章 結論與未來方向 40 5.1 結論 40 5.2 未來方向與建議 42 參考文獻 44 中文文獻 44 英文文獻 45

    中文文獻
    TrendForce. (2022). TrendForce:受數位化、永續發展驅動,預估2022年全球電子紙市場規模將達47億美元,年增近50%. Retrieved 11/17 from https://www.trendforce.com.tw/presscenter/news/20220919-11382.html
    吳愷倫. (2024). 以FlexSim為工具應用精益生產技術於面板產線優化 崑山科技大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/8gf79r
    林雍智. (2010). 電子紙產業技術創新與應用之研究 國立臺北科技大學]. https://doi.org/10.6841%2fNTUT.2010.00091
    潘智義. (2024, 2024/10/17). 元太:看好全球每年需3億片電子標籤. 中央社. https://www.cna.com.tw/news/afe/202410170280.aspx
    鄧慧純. (2022). 紙文明再創新. 台灣光華雜誌. https://www.taiwan-panorama.com/zh-tw/Articles/Details?Guid=b8686420-b067-4fdd-bd9c-126e3084b4d2&srsltid=AfmBOoqjRDe-fJ9DEdomIF8Ehk9HM6aFYdJvuvSTK0ku9Zih-FPD_3IZ
    薛英家. (2002). 非晶矽薄膜電晶體液晶顯示器製造. 科儀新知, 第二十三卷第四期. https://www.tiri.narl.org.tw/Publication/InstTdy
    薪威科技有限公司. (2014). FlexSim系統模擬案例實務. 薪威科技有限公司.
    簡禎富. (2019). 工業3.5:台灣企業邁向智慧製造與數位決策的戰略 (Vol. 初版) [商業理財> 管理與領導> 經營策略]. 天下雜誌. https://readingservices.kobo.com/ReadNow/2a5677a2-7df5-42e5-b1d3-d3b45f32f3fe?utm_content=cover&backref_url=https%3a%2f%2fwww.kobo.com%2ftw%2fzh%2flibrary%2fbooks
    簡禎富, 王宏鍇, & 傅文翰. (2018). 「工業3.5」之先進智慧製造系統架構:半導體智慧製造為例. 管理評論, 第37卷第3期, 20. https://doi.org/10.6656/MR.201807_37(3).CNI015
    英文文獻
    Bai, P. F., Hayes, R. A., Jin, M., Shui, L., Yi, Z. C., Wang, L., Zhang, X., & Zhou, G. (2014). Review of Paper-Like Display Technologies. Progress In Electromagnetics Research, 147, 95-116. https://doi.org/10.2528/pier13120405
    Chawla, S., & Singari, R. M. (2023). Modelling and Simulation of Crankcase Cover Manufacturing in the Automobile
    Industry. Journal of Scientific & Industrial Research, 82, 597-602. https://doi.org/10.56042/jsir.v82i06.1816
    Dee, D. (1995). A Pragmatic Approach to Model Validation.
    EMB, T. (2024, 2024/1/22). Revolutionizing Reading: Innovative E-Paper Display Technologies. EMB Global. Retrieved 11/17 from https://blog.emb.global/innovative-e-paper-display-technologies/#7-4-use-cases-for-traditional-displays
    Gelenbe, E., & Guennouni, H. (1991). FLEXSIM: A flexible manufacturing system simulator. European Journal of Operational Research, 53(2), 149-165. https://doi.org/https://doi.org/10.1016/0377-2217(91)90131-E
    Hong, T.-Y., Chien, C.-F., Wang, H.-K., & Guo, H.-Z. (2018). A two-phase decoding genetic algorithm for TFT-LCD array photolithography stage scheduling problem with constrained waiting time. Computers & Industrial Engineering, 125, 200-211. https://doi.org/https://doi.org/10.1016/j.cie.2018.08.024
    Ikeziri, L. M., Souza, F. B. d., Gupta, M. C., & de Camargo Fiorini, P. (2019). Theory of constraints: review and bibliometric analysis. International Journal of Production Research, 57(15-16), 5068-5102. https://doi.org/10.1080/00207543.2018.1518602
    Kovbasiuk, K., Židek, K., Balog, M., & Dobrovolska, L. (2021). Analysis of the Selected Simulation Software Packages: A Study. Acta Tecnología, 7(4), 111-120. https://doi.org/10.22306/atec.v7i4.120
    Krynke, M. (2021). Personnel management on the production line using the FlexSim simulation environment. Manufacturing Technology, 21(5), 657-667. https://doi.org/10.21062/mft.2021.073
    Lewicki, W., Niekurzak, M., & Wróbel, J. (2024). Development of a Simulation Model to Improve the Functioning of Production Processes Using the FlexSim Tool. Applied Sciences, 14(16), 6957. https://www.mdpi.com/2076-3417/14/16/6957
    Lin, J. T., Hong, I. H., Wu, C.-H., & Wang, K.-S. (2010). A model for batch available-to-promise in order fulfillment processes for TFT-LCD production chains. Computers & Industrial Engineering, 59(4), 720-729. https://doi.org/https://doi.org/10.1016/j.cie.2010.07.026
    Luściński, S., & Ivanov, V. (2020). A simulation study of Industry 4.0 factories based on the ontology on flexibility with using Flexsim® software. Management and Production Engineering Review, 11.
    Naylor, T. H., Finger, J. M., McKenney, J. L., Schrank, W. E., & Holt, C. C. (1967). Verification of Computer Simulation Models. Management Science, 14(2), B92-B106. http://www.jstor.org/stable/2628207
    Nigischer, C., Reiterer, F., Bougain, S., & Grafinger, M. (2023). Finding the proper level of detail to achieve sufficient model fidelity using FlexSim: An industrial use case. Procedia CIRP, 119, 1240-1245. https://doi.org/https://doi.org/10.1016/j.procir.2023.02.192
    Punna Rao, G. V., Nallusamy, S., & Raman, P. (2019). Enhancement of Production in Subassembly Line of a Medium Scale Industry Using Different Lean Tools and Flexsim Simulation Software. International Journal of Engineering Research in Africa, 44, 229 - 239. https://doi.org/10.4028/www.scientific.net/JERA.44.229
    Qiao, D., & Wang, Y. (2021). A review of the application of discrete event simulation in manufacturing. Journal of Physics: Conference Series, 1802(2), 022066. https://doi.org/10.1088/1742-6596/1802/2/022066
    Rehman, M., & Pedersen, S. A. (2012). Validation of simulation models. Journal of Experimental & Theoretical Artificial Intelligence, 24(3), 351-363. https://doi.org/10.1080/0952813X.2012.695459
    Wang, Y., & Chen, A. (2016). Production logistics simulation and optimization of industrial enterprise based on Flexsim. International Journal of Simulation Modelling, 15(4), 732-741. https://doi.org/10.2507/IJSIMM15(4)CO18
    Zhu, X., Zhang, R., Chu, F., He, Z., & Li, J. (2014). A Flexsim-based Optimization for the Operation Process of Cold-Chain Logistics Distribution Centre. Journal of Applied Research and Technology, 12(2), 270-278. https://doi.org/https://doi.org/10.1016/S1665-6423(14)72343-0

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE