| 研究生: |
陳君佩 Chen, Chun-Pei |
|---|---|
| 論文名稱: |
數位工廠的實現:FlexSim軟體於TFT-LCD Array廠之產能運用-以I公司為例 The Realization of Digital Factory: An Application of TFT-LCD Array Fab Using FlexSim Software-A Case Study of Company I |
| 指導教授: |
謝中奇
Hsieh, Chung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 電子紙顯示器 、TFT-LCD 、FlexSim 、數位工廠 、離散事件模擬 、產能瓶頸 |
| 外文關鍵詞: | EPD, TFT-LCD, FlexSim, Digital Factory, Discrete Event Simulation, Capacity Bottleneck |
| 相關次數: | 點閱:63 下載:27 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以TFT-LCD產業的Array廠為例,探討如何應用FlexSim離散事件模擬軟體實現數位工廠,提升生產效率與產能運用。隨著市場需求趨於多樣化,競爭日益激烈,個案廠自傳統TFT-LCD生產線轉型專注於電子紙顯示器(Electronic Paper Display, EPD)的製造。然而,由於電子紙顯示器的製程較為複雜,生產週期較TFT-LCD延長1.5至3倍,影響整體生產效率。
為解決此問題,個案擬導入新製程,透過減少黃光製程的PEP數(曝光次數),以提升生產效率並降低碳排放,達成永續發展目標。研究運用FlexSim模擬軟體建構數位工廠模型,依據實際生產參數模擬不同產品類別的生產場景,並以現況與三種設計情境分析新製程導入對整體產能的影響。結果顯示,新製程可顯著提升黃光製程的產能,但在部分情境下,產能瓶頸轉移至乾蝕刻製程,進一步限制了整體產能提升幅度。
研究結果顯示,透過調整產品配置基準、精進製程參數及設備投資規劃,可逐步解決瓶頸轉移問題,並提高生產效率。同時,亦證明FlexSim軟體作為數位工廠工具的有效性,不僅可模擬實際生產情境,還能作為企業進行生產決策與產能管理的重要輔助工具。本研究成果可提供TFT-LCD及電子紙顯示器等產業在數位工廠轉型方面之參考,進一步推動製造業向智慧化與高效能生產邁進。
This study investigates the application of FlexSim discrete event simulation software to implement a digital factory and optimize production processes and capacity utilization, using the TFT-LCD industry's Array Fab as a case study. As market demand diversifies and competition intensifies, the case factory transitioned from traditional TFT-LCD manufacturing to electronic paper display (EPD) production. However, due to the complexity of the EPD manufacturing process, the production cycle was extended by 1.5 to 3 times compared to TFT-LCD, with the photolithography process (exposure machines) becoming a major bottleneck that constrained overall production efficiency.
To address this issue, a new process was introduced to reduce the number of photolithography exposure steps (PEP count), thereby improving production efficiency and reducing carbon emissions to achieve sustainability goals. This study utilized FlexSim to construct a digital factory model, simulating various production scenarios based on real-world parameters and analyzing four different conditions to evaluate the impact of the new process on overall capacity. The results demonstrated that the new process significantly improved the capacity of the photolithography stage; however, in certain scenarios, the bottleneck shifted to the dry etching process, further limiting overall capacity improvements.
Findings indicate that optimizing product configurations, refining process parameters, and strategically planning equipment investments can help mitigate bottleneck shifts and enhance production efficiency. This study confirms the effectiveness of FlexSim as a digital factory tool, capable of not only simulating real production scenarios but also serving as a valuable decision-making and capacity management aid for enterprises. The research findings provide insights for the TFT-LCD and EPD industries in their digital transformation efforts, contributing to the advancement of smart and high-efficiency manufacturing.
中文文獻
TrendForce. (2022). TrendForce:受數位化、永續發展驅動,預估2022年全球電子紙市場規模將達47億美元,年增近50%. Retrieved 11/17 from https://www.trendforce.com.tw/presscenter/news/20220919-11382.html
吳愷倫. (2024). 以FlexSim為工具應用精益生產技術於面板產線優化 崑山科技大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/8gf79r
林雍智. (2010). 電子紙產業技術創新與應用之研究 國立臺北科技大學]. https://doi.org/10.6841%2fNTUT.2010.00091
潘智義. (2024, 2024/10/17). 元太:看好全球每年需3億片電子標籤. 中央社. https://www.cna.com.tw/news/afe/202410170280.aspx
鄧慧純. (2022). 紙文明再創新. 台灣光華雜誌. https://www.taiwan-panorama.com/zh-tw/Articles/Details?Guid=b8686420-b067-4fdd-bd9c-126e3084b4d2&srsltid=AfmBOoqjRDe-fJ9DEdomIF8Ehk9HM6aFYdJvuvSTK0ku9Zih-FPD_3IZ
薛英家. (2002). 非晶矽薄膜電晶體液晶顯示器製造. 科儀新知, 第二十三卷第四期. https://www.tiri.narl.org.tw/Publication/InstTdy
薪威科技有限公司. (2014). FlexSim系統模擬案例實務. 薪威科技有限公司.
簡禎富. (2019). 工業3.5:台灣企業邁向智慧製造與數位決策的戰略 (Vol. 初版) [商業理財> 管理與領導> 經營策略]. 天下雜誌. https://readingservices.kobo.com/ReadNow/2a5677a2-7df5-42e5-b1d3-d3b45f32f3fe?utm_content=cover&backref_url=https%3a%2f%2fwww.kobo.com%2ftw%2fzh%2flibrary%2fbooks
簡禎富, 王宏鍇, & 傅文翰. (2018). 「工業3.5」之先進智慧製造系統架構:半導體智慧製造為例. 管理評論, 第37卷第3期, 20. https://doi.org/10.6656/MR.201807_37(3).CNI015
英文文獻
Bai, P. F., Hayes, R. A., Jin, M., Shui, L., Yi, Z. C., Wang, L., Zhang, X., & Zhou, G. (2014). Review of Paper-Like Display Technologies. Progress In Electromagnetics Research, 147, 95-116. https://doi.org/10.2528/pier13120405
Chawla, S., & Singari, R. M. (2023). Modelling and Simulation of Crankcase Cover Manufacturing in the Automobile
Industry. Journal of Scientific & Industrial Research, 82, 597-602. https://doi.org/10.56042/jsir.v82i06.1816
Dee, D. (1995). A Pragmatic Approach to Model Validation.
EMB, T. (2024, 2024/1/22). Revolutionizing Reading: Innovative E-Paper Display Technologies. EMB Global. Retrieved 11/17 from https://blog.emb.global/innovative-e-paper-display-technologies/#7-4-use-cases-for-traditional-displays
Gelenbe, E., & Guennouni, H. (1991). FLEXSIM: A flexible manufacturing system simulator. European Journal of Operational Research, 53(2), 149-165. https://doi.org/https://doi.org/10.1016/0377-2217(91)90131-E
Hong, T.-Y., Chien, C.-F., Wang, H.-K., & Guo, H.-Z. (2018). A two-phase decoding genetic algorithm for TFT-LCD array photolithography stage scheduling problem with constrained waiting time. Computers & Industrial Engineering, 125, 200-211. https://doi.org/https://doi.org/10.1016/j.cie.2018.08.024
Ikeziri, L. M., Souza, F. B. d., Gupta, M. C., & de Camargo Fiorini, P. (2019). Theory of constraints: review and bibliometric analysis. International Journal of Production Research, 57(15-16), 5068-5102. https://doi.org/10.1080/00207543.2018.1518602
Kovbasiuk, K., Židek, K., Balog, M., & Dobrovolska, L. (2021). Analysis of the Selected Simulation Software Packages: A Study. Acta Tecnología, 7(4), 111-120. https://doi.org/10.22306/atec.v7i4.120
Krynke, M. (2021). Personnel management on the production line using the FlexSim simulation environment. Manufacturing Technology, 21(5), 657-667. https://doi.org/10.21062/mft.2021.073
Lewicki, W., Niekurzak, M., & Wróbel, J. (2024). Development of a Simulation Model to Improve the Functioning of Production Processes Using the FlexSim Tool. Applied Sciences, 14(16), 6957. https://www.mdpi.com/2076-3417/14/16/6957
Lin, J. T., Hong, I. H., Wu, C.-H., & Wang, K.-S. (2010). A model for batch available-to-promise in order fulfillment processes for TFT-LCD production chains. Computers & Industrial Engineering, 59(4), 720-729. https://doi.org/https://doi.org/10.1016/j.cie.2010.07.026
Luściński, S., & Ivanov, V. (2020). A simulation study of Industry 4.0 factories based on the ontology on flexibility with using Flexsim® software. Management and Production Engineering Review, 11.
Naylor, T. H., Finger, J. M., McKenney, J. L., Schrank, W. E., & Holt, C. C. (1967). Verification of Computer Simulation Models. Management Science, 14(2), B92-B106. http://www.jstor.org/stable/2628207
Nigischer, C., Reiterer, F., Bougain, S., & Grafinger, M. (2023). Finding the proper level of detail to achieve sufficient model fidelity using FlexSim: An industrial use case. Procedia CIRP, 119, 1240-1245. https://doi.org/https://doi.org/10.1016/j.procir.2023.02.192
Punna Rao, G. V., Nallusamy, S., & Raman, P. (2019). Enhancement of Production in Subassembly Line of a Medium Scale Industry Using Different Lean Tools and Flexsim Simulation Software. International Journal of Engineering Research in Africa, 44, 229 - 239. https://doi.org/10.4028/www.scientific.net/JERA.44.229
Qiao, D., & Wang, Y. (2021). A review of the application of discrete event simulation in manufacturing. Journal of Physics: Conference Series, 1802(2), 022066. https://doi.org/10.1088/1742-6596/1802/2/022066
Rehman, M., & Pedersen, S. A. (2012). Validation of simulation models. Journal of Experimental & Theoretical Artificial Intelligence, 24(3), 351-363. https://doi.org/10.1080/0952813X.2012.695459
Wang, Y., & Chen, A. (2016). Production logistics simulation and optimization of industrial enterprise based on Flexsim. International Journal of Simulation Modelling, 15(4), 732-741. https://doi.org/10.2507/IJSIMM15(4)CO18
Zhu, X., Zhang, R., Chu, F., He, Z., & Li, J. (2014). A Flexsim-based Optimization for the Operation Process of Cold-Chain Logistics Distribution Centre. Journal of Applied Research and Technology, 12(2), 270-278. https://doi.org/https://doi.org/10.1016/S1665-6423(14)72343-0