| 研究生: |
林子言 Lin, Zi-Yan |
|---|---|
| 論文名稱: |
建立台灣道路的碳足跡基線 Establishing the carbon footprint baseline for roadways in Taiwan |
| 指導教授: |
張行道
Chang, Andrew S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 碳足跡 、道路工程 、每平方米碳排 、工程屬性 、碳排放基線 |
| 外文關鍵詞: | Carbon footprint, roadways, square-meter emissions, roadway characteristics, emissions baseline |
| 相關次數: | 點閱:107 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來工程要求永續,溫室氣體排放的研究也隨之增加,有些以道路工程為對象,盤查及估算其碳足跡。但通常分析少數案例,多個案例的研究尚少。
本研究估算道路工程的碳足跡,以11個案例不同種類道路為基礎,建立道路工程的碳足跡基線。首先明確計算的範圍及方法,由各案例的詳細價目表、單價分析表等取得材料數量、機料組成,及承包商提供資料獲得運距與載具規格、電水用料等,計算材料生產、運輸及施工階段產生的碳排放量,除以道路平方米面積,得到碳排放基線。最後比較不同道路的單位面積碳排放量,並分析不同屬性對碳排的影響。
彙整各案例計算結果,得到平均碳排為514 KgCO2/m2,其中材料生產、材料運輸、機具施工分別占84.8%、3.3%、12.0%,其計算比例佔工程金額79.1%。計算案例工項的碳排,大項占比較高的為橋梁、路工與排水,分別為40.7%、32.6%與19.7%,細項占比高的為混凝土與鋼筋,分別為37.4%與30.5%。
將案例依工程屬性分類,分析各屬性對碳排產生的影響。工程屬性分為:道路類型、橋梁占比、新建/整建、道路規格、施工金額與工項數,道路類型中碳排較高的為高速與快速道路,分別為735 KgCO2/m2、544 KgCO2/m2;橋梁占比與碳排呈線性關係,即橋梁占比每增加1%,道路碳排增加2.83 KgCO2/m2;新建道路碳排高於整建,分別為569 KgCO2/m2、364 KgCO2/m2;道路面積與碳排呈正比,即每m2面積碳排約為514Kg;施工金額與與碳排亦呈正比,每增加百萬元工程金额,碳排增加24T;工項數則與碳排關聯不大。
本研究提供了道路碳排放計算的架構,包含計算模式與假設等過程,得到的碳排基線可作為道路工程碳排的比較基礎,道路屬性影響碳排放量,對道路工程的提出,供決策者選擇碳排放量並設計工程屬性。
Studies have increased in greenhouse gas (GHG) emissions or carbon footprint for roadways. But these studies calculated carbon footprint usually based on a few cases. The results are not enough to compare emission amounts of roadways or indicate what roadway characteristics influence emission amount. This research calculates the carbon footprint of roadways and analyzes 11 cases to establish the baseline for roadways in Taiwan. First, the scope and method of calculation are determined. Then the bills of quantities, unit price analysis tables of the roadway projects are collected to assess the material and equipment use quantities. The emissions of the three phases of material production, material transportation and construction are calculated. Finally, the carbon emissions of 11 roadways are compared and the influence from roadway characteristics are analyzed. From calculation, the baseline is about 514 KgCO2/m2, and the carbons of material production, material transportation and equipment operation take 84.8, 3.3, 12.0%, respectively. In large work item emissions, bridges, road work and drainage are the front three, taking 40.7, 32.6 and 19.7%, respectively. For small work items, steel bars and concrete take the first two places with 37.4 and 30.5%. In the influence from the characteristics of roadways, high or express roadways have more emissions with 735, and 544 KgCO2/m2. The bridge ratio in a roadway is in positive relationship with the emission amount. New roadway construction’s emission is higher than that of repairing. Construction cost is in positive relationship with emissions; every million dollars would increase 24 ton of emissions. The carbon emission baseline established by this research can be the foundation for comparing with other roadways. The carbon emissions indicated by different roadway characteristics can be used by the decision makers to select desired carbon amount and design the characteristics accordingly.
英文文獻
1. Barandica, J., Gonzalo, F., Álvaro, B., Juan, A., Delgado F., Acosta, J. (2013). “Applying life cycle thinking to reduce greenhouse gas emissions from road projects,” Journal of Cleaner Production, 57, 79-91.
2. Bilec, M., Ries, R., Matthews, H. S., Sharrard, A. L. (2006). “Example of a Hybrid Life-Cycle Assessment of Construction Processes,” Journal of Infrastructure System, 12(4), 207-215.
3. Celauro, C., Corriere, C., Guerrieri, M., Casto, B. (2015). “Environmentally appraising different pavement and construction scenarios A comparative analysis for a typical local road,” Transportation Research Part D: Transport and Environment, 34 (1), 41-51.
4. Chang, A. S., Chang, H. J., Tsai, C. Y., Yang, S. S. and Muench, S. T. (2018). “Strategy of indicator incorporation for roadway sustainability certification,” Journal of Cleaner Production, 203, 836-847.
5. Chen, J., Zhao, F., Liu, Z. (2017). “Greenhouse gas emissions from road construction in China: A province-level analysis,” Journal of Cleaner Production, 168, 1039-1047.
6. Farina, A., Zanetti, M., Santagata, E., Blengini, G. (2017). “Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement,” Resources, Conservation and Recycling, 117 (2), 204-212.
7. García, T., Yepes , V., Alcalá, J. (2014). “Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability,” International Journal of Life Cycle Assessment, 19(1), 3-12.
8. Ghayeb, H. H., Razak, H. A., Sulong, N. (2019).“Evaluation of the CO2 emissions of an innovative composite precast concrete structure building frame,” Journal of Cleaner Production, 242, 1-12.
9. Giani, M., Dotelli, G., Brandni, N. (2015). “Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling,” Resources, Conservation and Recycling, 104(1), 224-238.
10. Huang, L., Zhang, Y., Deng, Y. (2017). “Exploring potential pathways towards urban greenhouse gas peaks: A case study of Guangzhou, China,” Applied Energy, 251(2), 65-73.
11. Huang, Y., Bird, R., Bell, M. (2009). “A comparative study of the emissions by road maintenance works and the disrupted traffic using life cycle assessment and micro-simulation,” Transportation Research Part D: Transport and Environment, 14(3), 197-204.
12. Huang, Y., Hakim, B., Zammataro, S. (2012). “Measuring the carbon footprint of roadconstruction using CHANGER,” International Journal of Pavement Engineering, 14(6), 590–600.
13. ISO 14040 (2006). Environment performace. Life cycle accessment-principles and framework. Second edition, ISO, Switzerland.
14. Jiang, R., Wu, C., Song, Y., Wu, P. (2019). “Estimating carbon emissions from road use, maintenance and rehabilitation through a hybrid life cycle assessment approach-A case study,” Journal of Cleaner Production, 277(1), 136-148.
15. Karlsson, I., Rootzén, J., Johnsson, F. (2019). “Reaching net-zero carbon emissions in construction supply chains – Analysis of a Swedish road construction project,” Renewable and Sustainable Energy Reviews, 120(2), 10-31.
16. Keijzer, E. E., Leegwater, G. A., Vos-Effting, S.E., Wit, M. S. (2015). “Carbon footprint comparison of innovative techniques in the construction and maintenance of road infrastructure in The Netherlands,” Environmental Science & Policy, 54, 218-225
17. Keoleian, G., Kendall, A., Dettling, J., Smith, V. (2005). “Life cycle modeling of concrete bridge design: Comparison of engineered cementitious composite link slabs and conventional steel expansion joints,” Journal of Infrastructure Systems, 11(1), 51-60.
18. Kuriyama, A., Abe, N. (2018). “Ex-post assessment of the Kyoto Protocol – quantification of CO2 mitigation impact in both Annex B and non-Annex B countries,” Applied Energy, 220, 286-295
19. Lenzen, M. et al. (2015). “Compiling and using input–output frameworks through collaborative virtual laboratories,” Science of The Total Environment, 485(1), 241-251.
20. Li, D., Wang, Y., Liu, Y., Sun, S., Gao, Y. (2020). “Estimating life-cycle CO2 emissions of urban road corridor construction: A case study in Xi’an, China,” Journal of Cleaner Production, 255, 13-27.
21. Liu, T., Wang, Q., Su, B. (2016). “A review of carbon labeling: Standards, implementation, and impact,” Renewable and Sustainable Energy Reviews, 53(4), 68-79.
22. Liu, Y., Wang, Y., Li, D. (2019). “Life cycle assessment for carbon dioxide emissions from freeway construction in mountainous area: Primary source, cut-off determination of system boundary,” Resources, Conservation and Recycling, 140(10), 36-44.
23. Loijos, A., Sandtro, N. (2013). “Life cycle climate impacts of the US concrete pavement network,” Resources, Conservation and Recycling, 72(12), 76-83.
24. Luo, W., Sandanayake, M., Zhang, G.(2019). “Direct and indirect carbon emissions in foundation construction – Two case studies of driven precast and cast-in-situ piles,” Journal of Cleaner Production, 211, 1517-1526.
25. Mao, R., Duan, H., Dong, D., Zuo, J. et al. (2017). “Quantification of carbon footprint of urban roads via life cycle assessment: Case study of a megacity-Shenzhen, China,” Journal of Cleaner Production, 166, 40-47.
26. Noland, B., Hanson, C. (2015). “Life-cycle greenhouse gas emissions associated with a highway reconstruction: a New Jersey case study,” Journal of Cleaner Production, 101, 137-147.
27. Pas 2050 (2011). “Specification for the assessment of the life cycle greenhouse,” BSI, UK.
28. Peeraya, I., Pereyra, J., Benvenu, M., Mostafavi, A. (2016). “Environmental assessment of pavement infrastructure: A systematic review,” Journal of Environmental Management, 176(1), 128-138.
29. Santos, J., Flintsch, G., Ferreira, A. (2016). “Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability,” Resources, Conservation and Recycling, 116(1), 15-31.
30. Seo, Y. and Kim, S. M. (2013). “Estimation of materials-induced CO2 emission from road construction in Korea,” Renewable and Sustainable Energy Reviews, 26, 625-631.
31. Thiel, M., Franke, W., Duran, F., Gehlen. (2014), Eco-Efficient Construction and Building Materials. 2nd International Congress on Concrete Durability, New Delhi, India.
32. Vera, D., Silvestre, J. D., Mateus, R., Brito, J. (2020), “Assessment and communication of the environmental performance of construction products in Europe: Comparison between PEF and EN 15804 compliant EPD schemes,” Resources, Conservation and Recycling, 156(1), 104-116.
33. VicRoads (2008). Victoria’s first carbon neutral road construction project, State Government of Victoria, Australia.
34. Wang, X., Duan, Z., Wu, L., Yang, D. (2015). “Estimation of carbon dioxide emission in highway construction: a case study in southwest region of China,” Journal of Cleaner Production, 103, 705-714.
35. Wu, P., Xia, B., Wang, X. (2015). “The contribution of ISO 14067 to the evolution of global greenhouse gas standards—A review,” Renewable and Sustainable Energy Reviews, 47(1), 142-150.
36. Xu, Z.(2017). “Influence of green imbalance for carbon emission based on case analysis,” Procedia Engineering, 205(3), 4030-4037.
37. Yin, L., Yao, Z., Wan, M.(2012). “Research on carbon footprint of landscape greening construction – the landscaping works for the open space of the optics valley road in wuhan city as an example,” Chin. Landsc. Arch., 28(4), 66-70.
38. Zhang, H., Lepech, M., Keoleian, G., Qian, S., Li, V (2010). “Dynamic life-cycle modeling of pavement overlay systems: Capturing the impacts of users, construction, and roadway deterioration,” Journal of Infrastructure Systems, 16(4), 299-309.
39. Zhou, N., He, G., Willianms, C., Fridley, D. (2015), “ELITE cities: A low-carbon eco-city evaluation tool for China,” Ecological Indicators, 48(1), 448-456.
中文文獻
1. GRI (2016),GRI 305:排放2016,阿姆斯特丹。
2. Roadplus(2020),韓國高速公路服務平台,https:// http://www.roadplus.co.kr/main/main.do,2020年12月28日網上資料。
3. 工研院(2019),產品碳足跡服務平台,https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=01_content&SiteID=1&MmmID=1036233376167172113&MGID=1001263364700054465,2019年11月20日網上資料。
4. 內政部(2013),市區道路及附屬工程設計規範,台北。
5. 公路總局(2013),「台9線蘇花公路山區路段改善計劃施工期間工程碳管理委託服務工作 102年年末進度報告書」,台北。
6. 公路總局(2015),https://ice2006.pixnet.net/blog/post/9613703,2007年10月7日上傳資料。
7. 公路總局(2015),西濱快速公路後續建設計劃推動實務及經驗分享, http://ws.ndc.gov.tw/001/administrator/10/relfile/0/9231/405e0e0b-fac6-4c6b-981c-a5983e26b55e.pdf,2015年12月20日上傳資料。
8. 公路總局(2017),公路法第二條,公路總局,台北。
9. 方冠今(2017),為碳足跡計算編制施工預算工項之改善-以港灣工程為例,土木系碩士論文,國立成功大學。
10. 王爽(2012),道路工程中的“碳足跡”量化分析,公路與管理雜誌,Vol.21,406-411。
11. 台北市政府工務局(2010),工料分析手冊-工料分析表,台北。
12. 台南市政府(2020a),https://land.tainan.gov.tw/NewsDetailC007115.aspx?Cond=ae97a9ec-9436-4159-ba19-64b370d94541,2020年9月4日上傳資料。
13. 台南市政府(2020b),https://www.tainan.gov.tw/News_Content.aspx?n=13371&s=7677307,2020年9月14日上傳資料。
14. 台南市政府(2020c),https://land.tainan.gov.tw/NewsDetailC007126.aspx?Cond=7bf1f0e9-d4a1-4c28-96c9-8660bb575b46,2020年11月5日上傳資料。
15. 交通部(2010),節能減碳規劃設計參考原則,台北。
16. 交通部公路總局蘇花公路改善工程處,https://suhua.thb.gov.tw/default.aspx. 2019年2月24日網上資料。
17. 交通部高速公路局(2019),https://www.freeway.gov.tw/Publish.aspx?cnid=95&p=12451,2019年3月15日上傳資料。
18. 交通部高速公路局第一新建工程處,https://www.freeway.gov.tw/FEO/Publish.aspx?cnid=3109,2017年1月17日上傳資料。
19. 交通部運研所(2012),交通運輸工程節能減碳規劃設計手冊研究與編訂,交通部,台北。
20. 交通部運研所(2013),產品碳足跡計算指引,台北。
21. 朱士傑(2014),材料製造與施工階段環境衝擊分析-以兩橋梁為例,土木系碩士論文,國立成功大學。
22. 行政院公共工程委員會(2011),公共工程編列手冊,台北。
23. 行政院環保署(2010),產品與碳足跡計算指引,行政院環保署,台北。
24. 行政院環保署(2015),PAS2060:2014實施碳中和參考規範,台北。
25. 行政院環保署(2016),行政院環境保護署推動產品碳足跡管理要點,行政院環保署,台北。
26. 行政院環保署(2017a),產品類別規則-道路,台北。
27. 行政院環保署(2017b),產品類別規則-橋梁,台北。
28. 行政院環保署(2017c),推動產品碳足跡標示作業要點,台北。
29. 行政院環保署(2018),產品碳足跡服務平台碳足跡資料庫,http://cfp-calculate.tw/cfpc/WebPage/LoginPage.aspx,2018年2月24日網上資料。
30. 低碳建築聯盟(2018),http://www.lcba.org.te/article/?article_item_id=81,2018年2月24日網上資料。
31. 吳秉澄(2002),工程間接成本問題探討,土木系碩士論文,國立成功大學。
32. 吳冠伋(2018),開發設計導向之永續運輸基礎設施管理,土木系碩士論文,國立成功大學。
33. 李雅君(2015),道路生態工程之碳足跡分析,土木系碩士論文,國立成功大學。
34. 東和鋼鐵(2016),東和鋼鐵105企業社會責任報告書,高雄。
35. 林憲德(2018a),建築碳足跡認證推廣減碳設計,營建知訊,Vol.431,10-15。
36. 林憲德(2018b),建築碳足跡(第三版),詹氏書局,台北。
37. 高雄市工務局(2016),https://data.kcg.gov.tw/dataset/ciaotou-36-2-widening-project,2016年9月12日上傳資料。
38. 高雄市工務局(2018),https://www.kcg.gov.tw/CityNews_Detail1.aspx?n=3A379BB94CA5F12D&sms=E45F85B23802FCDF&ss=B15C89960B8791CF,2017年1月9日上傳資料。
39. 張又升(2002),建築物生命週期二氧化碳減量評估,建築系博士論文,國立成功大學。
40. 張筱蓉(2015) ,綠道路指標對應之個案碳排放分析與認證策略,土木系碩士論文,國立成功大學。
41. 曹家銘(2018),港灣工程之碳排放計算與沉箱工法選擇,土木系碩士論文,國立成功大學。
42. 陳保展(2018),西濱快速公路八棟寮至九塊厝新建工程之鋪面工程生命週期排碳特性分析,鋪面工程,16卷第二期,55-64。
43. 陳雪晴等(2019),基於LCA的混凝土預製樁施工階段碳足跡研究,福建農林大學交通與土木工程學院。
44. 單信瑜(2010),公共工程規劃設計節能減碳之參考準則,碩士論文,國立交通大學。
45. 黃儒黌(2014),建築設備管線碳排係數之研究-以集合住宅為例,建築系碩士論文,國立成功大學。
46. 嘉義市工務處(2019),https://work.chiayi.gov.tw/News_Content.aspx?n=3918&s=489199,2019年9月10日上傳資料。
47. 嘉義縣政府建設處(2010),https://sheethub.com/data.gov.tw,2010年2月21日上傳資料。
48. 鄭家尹(2016),營造工程碳足跡分析-以建築結構為例,土木系碩士論文,國立成功大學。
49. 營建署(2001),市區道路規劃及設計規範之研究,營建署。
50. 營建署(2017),「苗栗地區污水下水道系統南苗主次幹管工程(一)—污水下水道工程碳排放量估算試辦作業碳排放量盤查報告」,台北。
51. 營建署(2020b),https://www.cpami.gov.tw/,2019年2月20日上傳資料。
52. 魏佩如(2010),產品碳足跡計算不確定性分析之研究,國立台北科技大學。
53. 羅元佑(2016),碳足跡計算假設與流程之建立與印證-以某道路工程為例,土木系碩士論文,國立成功大學。